10.α,β∈(${\frac{π}{2}$,π),且tanα<cotβ,則必有( 。
A.α<βB.α>βC.α+β<$\frac{3π}{2}$D.α+β>$\frac{3π}{2}$

分析 由題意可得α+β∈(π,2π),再根據(jù)tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$>0,可得α+β∈(π,$\frac{3π}{2}$),從而得出結(jié)論.

解答 解:α,β∈(${\frac{π}{2}$,π),且tanα<cotβ=$\frac{1}{tanβ}$<0,∴tanα•tanβ>1,α+β∈(π,2π),
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$>0,∴α+β∈(π,$\frac{3π}{2}$),
故選:C.

點評 本題主要考查正切函數(shù)在各個象限中的符號,兩角和的正切共公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列給出的四個框圖,其中滿足WHILE語句格式的是( 。
A.(1)(2)B.(2)(3)C.(2)(4)D.(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題正確的是(  )
A.第二象限角必是鈍角B.相等的角終邊必相同
C.終邊相同的角一定相等D.不相等的角終邊必不相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知拋物線y2=8x的焦點到雙曲線E:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線的距離不大于$\sqrt{3}$,則雙曲線E的離心率的取值范圍是( 。
A.(1,$\sqrt{2}$]B.(1,2]C.[$\sqrt{2}$,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若x∈(0,2π),則使$\sqrt{1-sin2x}$=sinx-cosx成立的x的取值范圍是[$\frac{π}{4},\frac{5π}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,AD平分∠A的內(nèi)角且與對邊BC交于D點,則$\frac{BD}{CD}$=$\frac{AB}{AC}$,將命題類比空間:在三棱錐A-BCD中,平面BCE平分二面角B-AD-C且與對棱BC交于E點,則可得到的正確命題結(jié)論為$\frac{BE}{CE}$=$\frac{{S}_{△ABD}}{{S}_{△ACD}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.運行如圖的程序框圖,輸出的n值為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的離心率e與其漸近線的斜率k滿足e=$\sqrt{2}$|k|,則該雙曲線的漸近線方程為(  )
A.y=±xB.y=±$\frac{\sqrt{2}}{2}$xC.y=±$\frac{1}{2}$xD.y=±$\sqrt{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知命題p:6-3x≥0;命題q:$\frac{1}{x+1}$<0,若p∧(¬q)為真命題,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案