【題目】設(shè)定義在R上的函數(shù),當(dāng)時(shí),取極大值,且函數(shù)的圖象關(guān)于原點(diǎn)對稱.

1)求的表達(dá)式;

2)試在函數(shù)的圖象上求兩點(diǎn),使以這兩點(diǎn)為切點(diǎn)的切線互相垂直,且切點(diǎn)的橫坐標(biāo)都在上;

3)設(shè),,求證:

【答案】(1);(2),或者,;(3)詳見解析.

【解析】

1)由奇偶性易得,由極值定義得,求出,即可求的表達(dá)式;(2)求導(dǎo)數(shù),利用,即可得出結(jié)論;(3)分別求出、的范圍,即可證明結(jié)論.

1)因?yàn)楹瘮?shù)的圖象關(guān)于原點(diǎn)對稱,

所以函數(shù)是奇函數(shù),即恒成立,

所以,

由題意得,所以

所以,經(jīng)驗(yàn)證滿足題意,所以

2,

設(shè)所求兩點(diǎn)為,其中,

,

因?yàn)?/span>,所以,或,

x1,x20,0

從而所求兩點(diǎn)的坐標(biāo)分別為,或者,

3)易知,

當(dāng)時(shí),,即上遞減,

,即,

,函數(shù)在處取極大值,

,,,得,

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓的長軸長為4

1)求橢圓的方程;

2)已知直線與橢圓交于兩點(diǎn),是否存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是直角梯形,ABCDBCCD,側(cè)面PAB為等邊三角形,ABBC2CD2

(Ⅰ)證明:ABPD;

(Ⅱ)若PD2,求直線PC與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,銀行儲蓄連年增長,下表是該地區(qū)某銀行連續(xù)五年的儲蓄存款(年底結(jié)算):

年份

儲蓄存款(千億元)

為方便研究,工作人員對上表的數(shù)據(jù)做了如下處理:,得到下表:

1)用最小二乘法求出關(guān)于的線性回歸方程;

2)通過(1)中的方程,求出關(guān)于的線性回歸方程,并用所求回歸方程預(yù)測年底,該地儲蓄存款額可達(dá)多少?

(附:參考公式,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 ,其焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于,兩點(diǎn),過,分別作拋物線的切線,交于點(diǎn).

(Ⅰ)求的值;

(Ⅱ)若,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)判斷函數(shù)上的單調(diào)性

(2)若恒成立,求整數(shù)的最大值

(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:,設(shè)數(shù)列的前項(xiàng)和為.證明:

(Ⅰ);

(Ⅱ)

(Ⅲ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解青少年的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對30名青少年進(jìn)行調(diào)查,得到如下列聯(lián)表:

不常喝

計(jì)

2

不肥胖

18

計(jì)

30

已知從這30名青少年中隨機(jī)抽取1名,抽到肥胖青少年的概率為

(1)請將列聯(lián)表補(bǔ)充完整;(2)是否有99.5%的把握認(rèn)為青少年的肥胖與常喝碳酸飲料有關(guān)?

獨(dú)立性檢驗(yàn)臨界值表:

P(K2k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中n=a+b+c+d

查看答案和解析>>

同步練習(xí)冊答案