4.某貨運員擬運送甲、乙兩種貨物,每件貨物的體積、重量、可獲利潤如表所示:
體積(升/件)重量(公斤/件)利潤(元/件)
20108
102010
在一次運輸中,貨物總體積不超過110升,總重量不超過100公斤,那么在合理的安排下,一次運輸獲得的最大利潤為( 。
A.65元B.62元C.60元D.56元

分析 運送甲x件,乙y件,利潤為z,建立約束條件和目標(biāo)函數(shù),利用線性規(guī)劃的知識進行求解即可.

解答 解:設(shè)運送甲x件,乙y件,利潤為z,
則由題意得$\left\{\begin{array}{l}{20x+10y≤110}\\{10x+20y≤100}\\{x,y∈N}\end{array}\right.$,即$\left\{\begin{array}{l}{2x+y≤11}\\{x+2y≤10}\\{x,y∈N}\end{array}\right.$,且z=8x+10y,
作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=8x+10y得y=-$\frac{4}{5}$x+$\frac{z}{10}$,
平移直線y=-$\frac{4}{5}$x+$\frac{z}{10}$,由圖象知當(dāng)直線y=-$\frac{4}{5}$x+$\frac{z}{10}$經(jīng)過點B時,直線的截距最大,此時z最大,
由$\left\{\begin{array}{l}{2x+y=11}\\{x+2y=10}\end{array}\right.$,得$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$,即B(4,3),
此時z=8×4+10×3=32+30=62,
故選:B.

點評 本題主要考查線性規(guī)劃的應(yīng)用,設(shè)出變量,建立約束條件和目標(biāo)函數(shù),作出圖象,利用線性規(guī)劃的知識進行求解是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是(  )
A.-2B.$-\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,四邊形OABP是平行四邊形,過點P的直線與射線OA、OB分別相交于點M、N,若$\overrightarrow{OM}$=x$\overrightarrow{OA}$,$\overrightarrow{ON}$=y$\overrightarrow{OB}$.
(Ⅰ)利用$\overrightarrow{NM}$∥$\overrightarrow{MP}$,把y用x表示出來(即求y=f(x)的解析式);
(Ⅱ)設(shè)數(shù)列{an}的首項a1=1,an=f(an-1)(n≥2且n∈N*).
①求證:數(shù)列{${\frac{1}{a_n}}$}為等差數(shù)列;
②設(shè)bn=$\frac{1}{a_n}$,cn=$\frac{2^n}{{({2^{b_n}}+1)•({2^{{b_{n+1}}}}+1)}}$,求數(shù)列{cn}前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}中,a1=2,an+1=2an+3n+1,則數(shù)列{an}的通項公式an=3n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在西非肆虐的“埃博拉病毒”的傳播速度很快,這已經(jīng)成為全球性的威脅.為了考察某種埃博拉病毒疫苗的效果,現(xiàn)隨機抽取100只小鼠進行試驗,得到如表列聯(lián)表:
感染未感染總計
服用104050
未服用203050
總計3070100
附表:
P(K2>k)0.100.050.025
k2.7063.8415.024
參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d為樣本容量)
參照附表,下列結(jié)論正確的是( 。
A.在犯錯誤的概率不超5%過的前提下,認為“小動物是否被感染與有沒有服用疫苗有關(guān)”
B.在犯錯誤的概率不超5%過的前提下,認為“小動物是否被感染與有沒有服用疫苗無關(guān)”
C.有97.5%的把握認為“小動物是否被感染與有沒有服用疫苗有關(guān)”
D.有97.5%的把握認為“小動物是否被感染與有沒有服用疫苗無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知{an}是遞增的等差數(shù)列,Sn為{an}的前n項和,且S5=5,a3,a4,a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求|a1|+|a2|+…+|a100|的值;
(Ⅲ)若集合$\{n|{(-1)^n}\frac{a_n}{2^n}>λ,n∈{N^*}\}$中有且僅有2個元素,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.銳角三角形△ABC滿足b2-a2=ac,則$\frac{1}{tanA}-\frac{1}{tanB}$的取值范圍為$(1,\frac{{2\sqrt{3}}}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,過點P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,滿足P、B、F、A四點共圓.
(Ⅰ)證明:AE∥CD;
(Ⅱ)若圓O的半徑為5,且PC=CF=FD=3,求四邊形PBFA的外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)是定義在R上的奇函數(shù),且f(x+2)=-f(x)恒成立,當(dāng)x∈(0,2]時,f(x)=2x+log2x,則f(2015)=( 。
A.-2B.$\frac{1}{2}$C.2D.5

查看答案和解析>>

同步練習(xí)冊答案