18.函數(shù)y=2+sinx($\frac{π}{6}≤x≤\frac{2π}{3}$)的值域是[$\frac{5}{2}$,3].

分析 根據(jù)正弦函數(shù)的圖象及性質(zhì)即可求解.

解答 解:∵$\frac{π}{6}≤x≤\frac{2π}{3}$,
∴$\frac{1}{2}$≤sinx≤1
∴$2+\frac{1}{2}≤$2+sinx≤2+1
即函數(shù)y=2+sinx($\frac{π}{6}≤x≤\frac{2π}{3}$)的值域?yàn)閇$\frac{5}{2}$,3].
故答案為:[$\frac{5}{2}$,3].

點(diǎn)評(píng) 本題考查了正弦函數(shù)的圖象及性質(zhì)的運(yùn)用,值域的求法,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,在四面體ABCD中,AB=CD=4,AD=BD=5,AC=BC=6,點(diǎn)E,F(xiàn),G,H分別在棱AD,BD,BC,AC上,若直線AB,CD都平行于平面EFGH,則四邊形EFGH面積的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={x|1<x<3},集合B={y|y=x-2,x∈A},則集合A∩B=( 。
A.{x|1<x<3}B.{x|-1<x<3}C.{x|-1<x<1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)y=logax+1(a>0,a≠1)恒過(guò)點(diǎn)(m,n),其中(m,n)滿足方程3a2x+2b2y=a2b2,且a2+4b2=t,則t的最小值為14+4$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)$y=1-2x-\frac{3}{x-1}(x<1)$的最小值為2$\sqrt{6}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知角α終邊上一點(diǎn)P(-3,4),求$\frac{{cos({\frac{π}{2}+α})•sin({-π+α})}}{{cos({\frac{3π}{2}-α})•sin({\frac{9π}{2}+α})}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在極坐標(biāo)系中曲線C的極坐標(biāo)方程為ρsin2θ-cosθ=0,點(diǎn)$M({1,\frac{π}{2}})$.以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸建立直角坐標(biāo)系.斜率為-1的直線l過(guò)點(diǎn)M,且與曲線C交于A,B兩點(diǎn).
(1)求曲線C和直線l的直角坐標(biāo)方程;
(2)求兩點(diǎn)A,B之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若對(duì)?a∈[$\frac{1}{{e}^{2}}$,1],?b∈[-1,1],使λ+alna=2b2eb(e是自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)λ的取值范圍是(  )
A.[$\frac{1}{e}$,2e]B.[$\frac{1}{e}$,$\frac{2}{e}$]C.[$\frac{3}{e}$,2e]D.[$\frac{3}{e}$,$\frac{8}{{e}^{2}}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.據(jù)市場(chǎng)調(diào)查,某種商品一年內(nèi)每件出廠價(jià)在7千元的基礎(chǔ)上,按月呈f(x)=Asin(ωx+φ)+b(b>0,ω>0,|φ|<$\frac{π}{2}$)的模型波動(dòng)(x為月份),已知3月份達(dá)到最高價(jià)9千元,7月份價(jià)格最低為5千元,根據(jù)以上條件可確定f(x)的解析式為(  )
A.f(x)=2sin($\frac{π}{4}$x-$\frac{π}{4}$)+7(1≤x≤12,x∈N+B.f(x)=9sin($\frac{π}{4}$x-$\frac{π}{4}$)+7(1≤x≤12,x∈N+
C.f(x)=2$\sqrt{2}$sin$\frac{π}{4}$x+7(1≤x≤12,x∈N+D.f(x)=2sin($\frac{π}{4}$x+$\frac{π}{4}$)+7(1≤x≤12,x∈N+

查看答案和解析>>

同步練習(xí)冊(cè)答案