已知數(shù)列的前項(xiàng)和為,,是與的等差中項(xiàng)().
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在正整數(shù),使不等式恒成立,若存在,求出
的最大值;若不存在,請說明理由.
(1) (2)存在,11
解析試題分析:
(1)解法一:根據(jù)是與的等差中項(xiàng),利用等差中項(xiàng)得到,()①,
當(dāng)時有 ②,則①-②可得,從而可得數(shù)列通項(xiàng).
解法二:根據(jù)是與的等差中項(xiàng),利用等差中項(xiàng)得到,()①,根據(jù)該式的結(jié)構(gòu)特征,利用構(gòu)造法,可構(gòu)造出等比數(shù)列,從而求得,進(jìn)而利用得到數(shù)列的通項(xiàng).
(2)根據(jù)(1)的結(jié)論可知,數(shù)列是等比數(shù)列,所以可以得到其前項(xiàng)和;代入化簡,討論的奇偶發(fā)現(xiàn), 為奇數(shù)時,恒成立; 為偶數(shù)時,可將其轉(zhuǎn)化為二次函數(shù)在固定區(qū)間恒成立問題,利用單調(diào)性可判斷是否存在這樣的正整數(shù).
試題解析:(1)解法一:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/98/1/ad4us1.png" style="vertical-align:middle;" />是與的等差中項(xiàng),
所以(),即,()①
當(dāng)時有 ②
①-②得,即對都成立
又根據(jù)①有即,所以
所以. 所以數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列.
解法二: 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/98/1/ad4us1.png" style="vertical-align:middle;" />是與的等差中項(xiàng),
所以(),即,()
由此得(),
又,所以(),
所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.
得,即(),
所以,當(dāng)時,,
又時,也適合上式,所以.
(2)根據(jù)(1)的結(jié)論可知,
數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列,
所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{ }、{ }滿足:.
(1)求
(2)證明:數(shù)列{}為等差數(shù)列,并求數(shù)列和{ }的通項(xiàng)公式;
(3)設(shè),求實(shí)數(shù)為何值時 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是數(shù)列的前項(xiàng)和,且.
(1)當(dāng),時,求;
(2)若數(shù)列為等差數(shù)列,且,.
①求;
②設(shè),且數(shù)列的前項(xiàng)和為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和,數(shù)列滿足.
(1)求
(2)求證數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(3)設(shè),數(shù)列的前項(xiàng)和為,求滿足的的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,數(shù)列滿足:,已知對任意都成立
(1)求的值
(2)設(shè)數(shù)列的前項(xiàng)的和為,問是否存在互不相等的正整數(shù),使得成等差數(shù)列,且成等比數(shù)列?若存在,求出;若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列 的各項(xiàng)均為正數(shù),,公比為,且,.
(1)求與; (2)設(shè)數(shù)列滿足,求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是一個公差大于0的等差數(shù)列,且滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列和數(shù)列滿足等式:(n為正整數(shù))求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列{an}中,a1+a3=8,且a4為a2和a9的等比中項(xiàng),求數(shù)列{an}的首項(xiàng)、公差及前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.
(1)求數(shù)列和的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com