設集合A⊆X,定義函數(shù)fA(x)=
1,x∈A
0,x∈
C
 
X
A
,則對于集合M⊆X,N⊆X,下列命題中不正確的是( 。
A、M⊆N⇒fM(x)≤fN(x),?x∈X
B、f
C
 
X
M
(x)=1-fM
(x),?x∈X
C、fM∩N(x)=fM(x)fN(x),?x∈X
D、fM∪N(x)=fM(x)+fN(x),?x∈X
考點:命題的真假判斷與應用
專題:導數(shù)的概念及應用
分析:本題考察集合的包含關系,注意要以定義的函數(shù)fA(x)作為突破口.
解答: 解:A.∵M⊆N,∴?x∈M,則x∈N,∴fM(x)=1=fN(x),∴fM(x)≤fN(x),A正確;
B.∵?x∈M,fM(x)=1,則f
C
 
X
M
(x)
=0,?x∈CXM,同樣得出,∴f
C
 
X
M
(x)=1-fM
(x),B正確;
C.?x∈M∩N,則x∈M,且x∈N,∴fM(x)=fN(x)=1,∴fM∩N(x)=fM(x)•fN(x),C正確;
D.當x∈M∩N時x∈M∪N,則fM(x)=1=fN(x),則fM(x)+fN(x)=2≠fM∪N(x),fM∪N(x)=1,D不正確;.
故選:D.
點評:本題考查了新定義特征函數(shù)、集合之間的關系及其運算、元素與集合之間的關系,考查了推理能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某商店根據(jù)以往某種玩具的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組的頻率視為概率,并假設每天的銷售量相互獨立.
(1)估計日銷售量的眾數(shù);
(2)求在未來連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個且另1天的日銷售量低于50個的概率;
(3)用X表示在未來3天里日銷售量不低于100個的天數(shù),求隨機變量X的分布列,期望E(X)及方差D(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a>0,b>0,且
1
a
+
1
b
=
ab
,則a3+b3的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)是定義在非零實數(shù)集上的函數(shù),f′(x)為其導函數(shù),且x>0時,xf′(x)-f(x)<0,記a=
f(20.2)
20.2
,b=
f(0.22)
0.22
,c=
f(log25)
log25
,則( 。
A、a<b<c
B、b<a<c
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-1)2+(y-1)2=2經(jīng)過橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點F,且F到右準線的距離為2.
(1)求橢圓Γ的方程;
(2)如圖,過原點O的射線l與橢圓Γ在第一象限的交點為Q,與圓C的交點為P,M為OP的中點,求
OM
OQ
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓錐底面半徑為1cm,高為
2
cm,其中有一個內(nèi)接正方體.
(1)畫出軸截面中截正方體的截面面積最大的截面圖形;
(2)求這個內(nèi)接正方體的棱長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)計算:(2
1
4
 
1
2
-(-9.6)0-(3
3
8
 -
2
3
+0.1-2
(2)已知log32=a,3b=5,試用a、b表示log303

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列五個命題:
①命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3<0”
②a∈R,“
1
a
<1”是“a>1”的必要不充分條件
③“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
④命題“若x2-3x+2=0則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
其中真命題的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:關于x的方程x2+mx+1=0有兩個不等的負實數(shù)根,q:關于x的方程4x2+4(m-2)x+1=0的兩個實根分別在(0,1)和(1,2)內(nèi),若(¬p)∧(¬q)是真命題,則實數(shù)m的取值范圍是
 

查看答案和解析>>

同步練習冊答案