【題目】平面直角坐標(biāo)系中,已知橢圓的左焦點(diǎn)為,離心率為,過(guò)點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)分別是橢圓的左、右頂點(diǎn),若過(guò)點(diǎn)的直線(xiàn)與橢圓相交于不同兩點(diǎn).
①求證:;
②求面積的最大值.
【答案】(1);(2)(ⅰ)見(jiàn)解析;(ⅱ).
【解析】
試題分析:(Ⅰ)根據(jù)離心率與垂直于長(zhǎng)軸的弦長(zhǎng)列出方程,求得的值,從而得到橢圓方程;(II)方法一:(i)分直線(xiàn)的斜率是否為0討論,當(dāng)時(shí),設(shè),直線(xiàn)的方程為,聯(lián)立橢圓方程,結(jié)合判別式求得的范圍,從而由使問(wèn)題得證;(ii)由=結(jié)合(ⅰ)用韋達(dá)定理寫(xiě)出表達(dá)式,利用基本不等式求出最大值;方法二:(i)由題意知直線(xiàn)的斜率存在,設(shè)其方程為,聯(lián)立橢圓方程,由判別式求得的取值范圍,從而由使問(wèn)題得證;(ii)由弦長(zhǎng)公式求得,用點(diǎn)到直線(xiàn)的距離求得邊上的高線(xiàn)長(zhǎng),從而得到的表達(dá)式,進(jìn)而用換元法求解.
試題解析:解:(1), 又,
所以.
所以橢圓的標(biāo)準(zhǔn)方程為
(2)(i)當(dāng)AB的斜率為0時(shí),顯然,滿(mǎn)足題意
當(dāng)AB的斜率不為0時(shí),設(shè),AB方程為代入橢圓方程
整理得,則,所以
,
,即
(ii)
當(dāng)且僅當(dāng),即.(此時(shí)適合△>0的條件)取得等號(hào).
三角形面積的最大值是
方法二(i)由題知,直線(xiàn)AB的斜率存在,設(shè)直線(xiàn)AB的方程為:,
設(shè),聯(lián)立,整理得,
則,所以
,
,即
(ii)
點(diǎn)到直線(xiàn)的距離為,
=
.
令,則,
當(dāng)且僅當(dāng),即(此時(shí)適合△>0的條件)時(shí),,即
三角形面積的最大值是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)E:x2=2py(p>0),直線(xiàn)y=kx+2與E交于A、B兩點(diǎn),且 =2,其中O為原點(diǎn).
(1)求拋物線(xiàn)E的方程;
(2)點(diǎn)C坐標(biāo)為(0,﹣2),記直線(xiàn)CA、CB的斜率分別為k1 , k2 , 證明:k12+k22﹣2k2為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,B是鈍角,且 a=2bsinA.
(1)求B的大小;
(2)若△ABC的面積為 ,且b=7,求a+c的值;
(3)若b=6,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2000多年前,古希臘大數(shù)學(xué)家阿波羅尼奧斯((Apollonius)發(fā)現(xiàn):平面截圓錐的截口曲線(xiàn)是圓錐曲線(xiàn).已知圓錐的高為, 為地面直徑,頂角為,那么不過(guò)頂點(diǎn)的平面;與夾角時(shí),截口曲線(xiàn)為橢圓;與夾角時(shí),截口曲線(xiàn)為拋物線(xiàn);與夾角時(shí),截口曲線(xiàn)為雙曲線(xiàn).如圖,底面內(nèi)的直線(xiàn),過(guò)的平面截圓錐得到的曲線(xiàn)為橢圓,其中與的交點(diǎn)為,可知為長(zhǎng)軸.那么當(dāng)在線(xiàn)段上運(yùn)動(dòng)時(shí),截口曲線(xiàn)的短軸頂點(diǎn)的軌跡為( )
A. 圓的部分 B. 橢圓的部分 C. 雙曲線(xiàn)的部分 D. 拋物線(xiàn)的部分
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐的底面是梯形,且, 平面, 是中點(diǎn), .
(Ⅰ)求證: 平面;
(Ⅱ)若, ,求直線(xiàn)與平面所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn)的極坐標(biāo)方程為: ,直線(xiàn)的參數(shù)方程是(為參數(shù), ).
(1)求曲線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)直線(xiàn)與曲線(xiàn)交于兩點(diǎn),且線(xiàn)段的中點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2asinB= b.
(1)求角A的大。
(2)若a=6,b+c=8,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+ )﹣ cos(2x+ ).
(1)數(shù)的單調(diào)增區(qū)間;
(2)若f(α)= ,α∈(0, ),求cosα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對(duì)邊,sin2B=2sinAsinC.
(1)若a=b,求cosB的值;
(2)若B=60°,△ABC的面積為4 ,求b的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com