已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí)有.

①求的解析式;

②求的值域;

③若,求的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

在斜△中,角,所對(duì)的邊長(zhǎng)分別為,,,且△的面積為1,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C1的極坐標(biāo)方程為ρ=4sinθ,圓C2的極坐標(biāo)方程為$ρ=4cos(θ+\frac{π}{6})$,已知C1與C2交于A,B兩點(diǎn),點(diǎn)B位于第一象限.
(Ⅰ)求點(diǎn)x和點(diǎn)y的極坐標(biāo);
(Ⅱ)設(shè)圓C1的圓心為C1,點(diǎn)P是直線BC1上的動(dòng)點(diǎn),且滿足$\overrightarrow{BP}$=m$\overrightarrow{B{C}_{1}}$,若直線C1P的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{\sqrt{3}}{2}λ}\\{y=1+\frac{1}{2}λ}\end{array}$(λ為參數(shù)),則m:λ的值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E是棱BB1上的動(dòng)點(diǎn),F(xiàn)是棱CD的中點(diǎn),則四面體A1D1EF體積的最大值是$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某三棱錐的三視圖如圖所示,正視圖、側(cè)視圖均為直角三角形,則該三棱錐的四個(gè)面中,面積最大的面的面積是$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某企業(yè)有甲、乙兩個(gè)分廠生產(chǎn)某種零件,按規(guī)定內(nèi)徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優(yōu)質(zhì)品,從甲、乙兩個(gè)分廠生產(chǎn)的零件中各抽取出500件,量其內(nèi)徑尺寸的結(jié)果如下表:
甲廠的零件內(nèi)徑尺寸:
分組[29.86,
29.90)
[29.90,29.94)[29.94,
29.98)
[29.98,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
頻數(shù)1530125198773520
乙廠的零件內(nèi)徑尺寸:
分組[29.86,
29.90)
[29.90,
29.94)
[29.94,
29.98)
[29.98,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
頻數(shù)407079162595535
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99.9%的把握認(rèn)為“生產(chǎn)的零件是否為優(yōu)質(zhì)品與在不同分廠生產(chǎn)有關(guān)”:
 甲廠乙廠合計(jì)
優(yōu)質(zhì)品   
非優(yōu)質(zhì)品   
合計(jì)   
附表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
0.1000.0500.0250.0100.001
2.7063.8415.0246.63510.828
(2)現(xiàn)用分層抽樣方法(按優(yōu)質(zhì)品和非優(yōu)質(zhì)品分二層),從乙廠中抽取5件零件,從這已知5件零件中任意抽取2件,將這2件零件中的優(yōu)質(zhì)品數(shù)記為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD⊥底面ABCD,AD=PD=2,E、F分別為CD、PB的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求證:平面AEF⊥平面PAB;
(3)設(shè)$AB=\sqrt{2}AD$,求直線AC與平面AEF所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.己知函數(shù)f(x)=sinx($\sqrt{3}$cosx+sinx)+$\frac{1}{2}$.
(Ⅰ)若x∈[0,π],求f(x)遞增區(qū)間;
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C的對(duì)應(yīng)邊分別為a,b,c,且c=$\sqrt{3}$,f(C)=2,sinB=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國(guó)慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:填空題

已知是定義在上的奇函數(shù)且,當(dāng),且時(shí),有,若對(duì)所有、恒成立,則實(shí)數(shù)的取值范圍是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案