【題目】已知函數(shù).
(1)若曲線在點(diǎn)處與直線相切,求與的值;
(2)若曲線與直線有兩個(gè)不同交點(diǎn),求的取值范圍.
【答案】(1)見解析(2)見解析
【解析】
試題分析:(1)若曲線在點(diǎn)處與直線相切,則,進(jìn)而可得與的值;(2)當(dāng)時(shí),曲線與直線最多只有一個(gè)交點(diǎn);若曲線與直線y=b 有兩個(gè)不同的交點(diǎn),則b>1.
試題解析:解:由,得.
(1)因?yàn)榍在點(diǎn)處與直線相切,
所以,解得.
(2)令,得.與的情況如下:
0 | |||
- | 0 | + | |
1 |
所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,是的最小值,當(dāng)時(shí),曲線與直線最多只有一個(gè)交點(diǎn);
當(dāng)時(shí),,,
所以存在,使得.
由于函數(shù)在區(qū)間和上均單調(diào),所以當(dāng)時(shí)曲線與直線有且僅有兩個(gè)不同交點(diǎn).
綜上可知,如果曲線與直線有兩個(gè)不同交點(diǎn),那么的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,過橢圓右頂點(diǎn)和上頂點(diǎn)的直線與圓相切.
(1)求橢圓的方程;
(2)設(shè)是橢圓的上頂點(diǎn),過點(diǎn)分別作直線交橢圓于兩點(diǎn),設(shè)這兩條直線的斜率分別為,且,證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,設(shè)傾斜角為的直線為參數(shù))與曲線為參數(shù))相交于不同的兩點(diǎn).
(1)若,求線段中點(diǎn)的坐標(biāo);
(2)若,其中,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸, 建立平面直角坐標(biāo)系,在平面直角坐標(biāo)系中, 直線經(jīng)過點(diǎn),傾斜角.
(1)寫出曲線直角坐標(biāo)方程和直線的參數(shù)方程;
(2)設(shè)與曲線相交于兩點(diǎn), 求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某校高三上學(xué)期期末數(shù)學(xué)考試成績中,隨機(jī)抽取了名學(xué)生的成績得到頻率分布直方圖如下:
(1)若用分層抽樣的方法從分?jǐn)?shù)在和的學(xué)生中共抽取人,該人中成績在的有幾人?
(2)在(1)中抽取的人中,隨機(jī)抽取人,求分?jǐn)?shù)在和各人的概率.
(3)根據(jù)頻率分布直方圖,估計(jì)該校高三學(xué)生本次數(shù)學(xué)考試的平均分;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.
(Ⅰ)求分?jǐn)?shù)在[50,60)的頻率及全班人數(shù);
(Ⅱ)求分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間矩形的高;
(Ⅲ)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在[90,100)之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求的普通方程和的傾斜角;
(2)設(shè)點(diǎn),和交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在處取得極小值,求的值;
(2)若在上恒成立,求的取值范圍;
(3)求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù),例如:
他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似地,稱圖2中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是
A. 289 B. 1 024 C. 1 225 D. 1 378
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com