已知cosα=
4
5
,cos(α+β)=
3
5
,且α,β為銳角,那么sinβ的值是( 。
A、
7
25
B、
1
5
C、
3
5
D、-
7
25
考點:兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:由同角三角函數(shù)的基本關(guān)系可得sinα和sin(α+β)的值,代入sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+β)sinα計算可得.
解答: 解:∵α,β為銳角,cosα=
4
5
,
∴sinα=
1-sin2α
=
3
5
,
又cos(α+β)=
3
5
,∴sin(α+β)=
4
5
,
∴sinβ=sin[(α+β)-α]
=sin(α+β)cosα-cos(α+β)sinα
=
4
5
×
4
5
-
3
5
×
3
5
=
7
25

故選:A
點評:本題考查兩角和與差的三角函數(shù)公式,涉及同角三角函數(shù)的基本關(guān)系,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x+1
+
1
x-1
的定義域為(  )
A、(-1,1)
B、[-1,1)
C、(-1,1)∪(1,+∞)
D、[-1,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把函數(shù)y=sin2x+
3
cos2x圖象上所有點的橫坐標縮短到原來的
1
2
倍,縱坐標不變,所得的圖象解析式為( 。
A、y=2sin(4x+
π
3
B、y=2sin(4x+
3
C、y=2sin(x+
π
3
D、y=2sin(x+
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,已知首項為
1
2
,末項為8,公比為2,則此等比數(shù)列的項數(shù)是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“x<0”是“l(fā)og2(x+1)<0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα+cosα=
1
2
(0<α<π)
(1)求sinαcosα;
(2)求sinα-cosα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列8,5,2,…的第8項是( 。
A、-13B、-16
C、-19D、-22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:
tan(2π-α)cos(
3
2
π-α)cos(6π-α)
tan(π-α)cos(α+
3
2
π)cos(α+
3
2
π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合M={x|x≤-2或x≥4},CRN={X|2≤x≤6},則M∩N=( 。
A、(-∞,-2]∪(6,+∞)
B、(-∞,-2]∪(6,+∞)
C、(-∞,2)∪[4,+∞)
D、(-∞,2]∪[4,+∞)

查看答案和解析>>

同步練習冊答案