(本小題共14分)在四棱錐中,底面是矩形,平面,. 以的中點(diǎn)為球心、為直徑的球面交于點(diǎn),交于點(diǎn).
(1)求證:平面⊥平面;      
(2)求直線與平面所成的角的正弦值.

(1)略
(2)
解:(1)依題設(shè)知,AC是所作球面的直徑,則AM⊥MC。
又因?yàn)镻 A⊥平面ABCD,則PA⊥CD,又CD⊥AD,
所以CD⊥平面PAD,則CD⊥AM,所以A M⊥平面PCD,
所以平面ABM⊥平面PCD。
(2)由(1)知,,又,則的中點(diǎn)可得
,

設(shè)D到平面ACM的距離為,由,
可求得,
設(shè)所求角為,則。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,三棱錐中,底面,
,點(diǎn),點(diǎn)分別是的中點(diǎn).

(1) 求證:側(cè)面⊥側(cè)面;
(2) 求點(diǎn)到平面的距離;
(3) 求異面直線所成的角的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如左圖示,在四棱錐A-BHCD中,AH⊥面BHCD,此棱錐的三視圖如下:
(1)求二面角B-AC-D的大;
(2)在線段AC上是否存在一點(diǎn)E,使ED與面BCD成45°角?若存在,確定E的位置;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)
如圖,在正方體ABCD—A1B1C1D1中,M、N、G
分別是A1A,D1C,AD的中點(diǎn).求證:(Ⅰ)MN//平面ABCD;(Ⅱ)MN⊥平面B1BG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分) 如圖,在三棱錐中,,的中點(diǎn).
(1)求證:
(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
等邊和梯形所在的平面相互垂直,,,為棱的中點(diǎn),∥平面.

(I)求證:平面平面;
(II)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(8分) 如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)面,且,若、分別為的中點(diǎn).
(1)求證:∥平面;
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知三個(gè)平面,若,且相交但不垂直,分別為內(nèi)的直線,則(▲)              
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知一四棱錐P-ABCD的三視圖如下,E是側(cè)棱PC上的動(dòng)點(diǎn)。
(1)求四棱錐P-ABCD的體積;
(2)若點(diǎn)E為PC的中點(diǎn),,求證EO//平面PAD;
(3)是否不論點(diǎn)E在何位置,都有BD⊥AE?證明你的結(jié)論。

查看答案和解析>>

同步練習(xí)冊(cè)答案