【題目】定義域是一切實數(shù)的函數(shù)y=f(x),其圖象是連續(xù)不斷的,且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf(x)=0對任意實數(shù)x都成立,則稱f(x)實數(shù)一個“λ一半隨函數(shù)”,有下列關于“λ一半隨函數(shù)”的結論:①若f(x)為“1一半隨函數(shù)”,則f(0)=f(2);②存在a∈(1,+∞)使得f(x)=ax為一個“λ一半隨函數(shù);③“ 一半隨函數(shù)”至少有一個零點;④f(x)=x2是一個“λ一班隨函數(shù)”;其中正確的結論的個數(shù)是(
A.1個
B.2個
C.3個
D.4個

【答案】C
【解析】解:①、若f(x)為“1一半隨函數(shù)”,則f(x+1)+f(x)=0,可得f(x+1)=﹣f(x),

可得f(x+2)=﹣f(x+1)=f(x),因此x=0,可得f(0)=f(2);故①正確;

②、假設f(x)=ax是一個“λ一半隨函數(shù)”,則ax+λ+λax=0對任意實數(shù)x成立,

則有aλ+λ=0,而此式有解,所以f(x)=ax是“λ一半隨函數(shù)”,故②正確.

③、令x=0,得f( )+ f(0)=0.所以f( )=﹣ f(0),

若f(0)=0,顯然f(x)=0有實數(shù)根;若f(0)≠0,f( )f(0)=﹣ (f(0))2<0,

又因為f(x)的函數(shù)圖象是連續(xù)不斷,所以f(x)在(0, )上必有實數(shù)根,

因此任意的“﹣ 一半隨函數(shù)”必有根,即任意“﹣ 一半隨函數(shù)”至少有一個零點.故③正確.

④、假設f(x)=x2是一個“λ一半隨函數(shù)”,則(x+λ)2+λx2=0,

即(1+λ)x2+2λx+λ2=0對任意實數(shù)x成立,所以λ+1=2λ=λ2=0,而此式無解,所以f(x)=x2不是一個“λ﹣同伴函數(shù)”.故④錯誤

正確判斷:①②③.

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx,則(
A.f(x)在(0,+∞)上是增函數(shù)
B.f(x)在 上是增函數(shù)
C.當x∈(0,1)時,f(x)有最小值
D.f(x)在定義域內無極值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)=﹣ x2+bln(x+2)在區(qū)間[﹣1,2]不單調,則b的取值范圍是(
A.(﹣∞,﹣1]
B.[8,+∞)
C.(﹣∞,﹣1]∪[8,+∞)
D.(﹣1,8)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=1﹣ 為定義在R上的奇函數(shù).
(1)試判斷函數(shù)的單調性,并用定義加以證明;
(2)若關于x的方程f(x)=m在[﹣1,1]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,若(2a﹣c)cosB=bcosC.
(1)求角B的大小,
(2)若a=3,△ABC的面積為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若x,y滿足 且z=y﹣x的最小值為﹣4,則k的值為(
A.2
B.﹣2
C.
D.﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù) 的值域為 . (其中[x]表示不大于x的最大整數(shù),例如[3.15]=3,[0.7]=0.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐P﹣ABCD中平面PAB⊥平面ABCD,底面ABCD是正方形.點M是棱PC的中點
(1)記平面ADM與平面PBC的交線是l,試判斷直線l與BC的位置關系,并加以證明.
(2)若 ,求證PB⊥平面ADM,并求直線PC與平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的單調遞增區(qū)間
(Ⅱ)若sin2x+af(x+ )+1>6cos4x對任意x∈(﹣ , )恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案