(坐標(biāo)系與參數(shù)方程選做題)已知圓C的極坐標(biāo)方程ρ=2cosθ,則圓C上點(diǎn)到直線l:ρcosθ-2ρsinθ+7=0的最短距離為_(kāi)_______.
分析:先利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ
2=x
2+y
2,進(jìn)行代換即得圓和直線的直角坐標(biāo)方程,再在直角坐標(biāo)系中算出圓心到直線距離,最后所求的最短距離就是圓心到直線的距離減去半徑即可.
解答:由ρ=2cosθ?ρ
2=2ρcosθ?x
2+y
2-2x=0?(x-1)
2+y
2=1,
ρcosθ-2ρsinθ+7=0?x-2y+7=0,
∴圓心到直線距離為:
.
則圓C上點(diǎn)到直線l:ρcosθ-2ρsinθ+7=0的最短距離為
故答案為:
-1.
點(diǎn)評(píng):本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,能在極坐標(biāo)系中用極坐標(biāo)刻畫(huà)點(diǎn)的位置,體會(huì)在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫(huà)點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.