【題目】將函數(shù)y=sin(x﹣ )圖象上所有的點(diǎn)( ),可以得到函數(shù)y=sin(x+ )的圖象.
A.向左平移 單位?
B.向右平移 單位
C.向左平移 單位?
D.向右平移 單位
【答案】A
【解析】解:∵y=sin(x+ )=sin[(x+ )﹣ ], ∴將函數(shù)y=sin(x﹣ )圖象上所有的點(diǎn)向左平移 單位,可以得到函數(shù)y=sin(x+ )的圖象.
故選:A.
【考點(diǎn)精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅原理也就是“等積原理”,它是由我國(guó)南北朝杰出的數(shù)學(xué)家祖沖之的兒子祖暅?zhǔn)紫忍岢鰜淼,祖暅原理的?nèi)容是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的平面所截,如果截得兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.已知,兩個(gè)平行平面間有三個(gè)幾何體,分別是三棱錐、四棱錐、圓錐(高度都為),其中:三棱錐的底面是正三角形(邊長(zhǎng)為),四棱錐的底面是有一個(gè)角為的菱形(邊長(zhǎng)為),圓錐的體積為,現(xiàn)用平行于這兩個(gè)平行平面的平面去截三個(gè)幾何體,如果截得的三個(gè)截面的面積相等,那么,下列關(guān)系式正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)上的動(dòng)點(diǎn)到焦點(diǎn)距離的最小值為 -1.以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓與直線x﹣y+ =0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點(diǎn)M(2,0)的直線與橢圓C相交于A,B兩點(diǎn),P為橢圓上一點(diǎn),且滿足 + =t (O為坐標(biāo)原點(diǎn)).當(dāng)|AB|= 時(shí),求實(shí)數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣3)2+(y﹣4)2=4,直線l過定點(diǎn)A(1,0).
(1)若l與圓C相切,求l的方程;
(2)若l與圓C相交于P、Q兩點(diǎn),若|PQ|=2 ,求此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F(xiàn)1 , F2分別是橢圓C: =1(a>b>0)的左、右焦點(diǎn),A是橢圓C的上頂點(diǎn),B是直線AF2與橢圓C的另一個(gè)交點(diǎn),∠F1AF2=60°
(1)求橢圓C的離心率;
(2)若a=2,求△AF1B的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的奇函數(shù)f(x)滿足在(﹣∞,0)上為增函數(shù)且f(﹣1)=0,則不等式xf(x)>0的解集為( )
A.(﹣∞,﹣1)∪(1,+∞)
B.(﹣1,0)∪(0,1)
C.(﹣1,0)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|0< ≤1},B={y|y=( )x , 且x<﹣1}
(1)若集合C={x|x∈A∪B,且xA∩B},求集合C;
(2)設(shè)集合D={x|3﹣a<x<2a﹣1},滿足A∪D=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)在[0,2]上單調(diào)遞增,且函數(shù)f(x+2)是偶函數(shù),則下列結(jié)論成立的是( )
A.f(1)<f( )<f( )
B.f( )<f(1)<f( )??
C.f( )<f( )<f(1)
D.f( )<f(1)<f( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某個(gè)實(shí)心零部件的形狀是如圖所示的幾何體,其下部是底面均是正方形,側(cè)面是全等的等腰梯形的四棱臺(tái)A1B1C1D1﹣ABCD,其上是一個(gè)底面與四棱臺(tái)的上底面重合,側(cè)面是全等的矩形的四棱柱ABCD﹣A2B2C2D2 .
(1)證明:直線B1D1⊥平面ACC2A2;
(2)現(xiàn)需要對(duì)該零部件表面進(jìn)行防腐處理,已知AB=10,A1B1=20,AA2=30,AA1=13(單位:厘米),每平方厘米的加工處理費(fèi)為0.20元,需加工處理費(fèi)多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com