【題目】如圖,三棱柱ABC﹣A1B1C1的底面是邊長為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長是 ,D是AC的中點(diǎn).
(1)求證:B1C∥平面A1BD;
(2)求二面角A1﹣BD﹣A的大;
(3)求直線AB1與平面A1BD所成的角的正弦值.
【答案】
(1)解:設(shè)AB1與A1B相交于點(diǎn)P,連接PD,則P為AB1中點(diǎn),
∵D為AC中點(diǎn),∴PD∥B1C.
又∵PD平面A1BD,B1C平面A1BD
∴B1C∥平面A1BD
(2)解:∵正三棱住ABC﹣A1B1C1,
∴AA1⊥底面ABC.
又∵BD⊥AC
∴A1D⊥BD
∴∠A1DA就是二面角A1﹣BD﹣A的平面角.
∵AA1= ,AD= AC=1
∴tan∠A1DA=
∴∠A1DA= ,即二面角A1﹣BD﹣A的大小是
(3)解:由(2)作AM⊥A1D,M為垂足.
∵BD⊥AC,平面A1ACC1⊥平面ABC,平面A1ACC1∩平面ABC=AC
∴BD⊥平面A1ACC1,
∵AM平面A1ACC1,
∴BD⊥AM
∵A1D∩BD=D
∴AM⊥平面A1DB,連接MP,則∠APM就是直線A1B與平面A1BD所成的角.
∵AA1= ,AD=1,∴在Rt△AA1D中,∠A1DA= ,
∴AM=1×sin60°= ,AP=AB1= .
∴sin∠APM=
∴直線AB1與平面A1BD所成的角的正弦值為
【解析】(1)由題意及題中P為AB1中點(diǎn)和D為AC中點(diǎn),中點(diǎn)這樣信息,得到線線PD∥B1C平行,在利用PD平面A1BD線面平行,利用線面平行的判定定理得到線面B1C∥平面A1BD平行;(2)有正三棱柱及二面角平面角的定義,找到二面角的平面角,然后再三角形中解出二面角的大。唬3)利用條件及上兩問的證題過成找到∠APM就是直線A1B與平面A1BD所成的線面角,然后再三角形中解出即可.
【考點(diǎn)精析】通過靈活運(yùn)用直線與平面平行的判定和空間角的異面直線所成的角,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= +a(a∈R)為奇函數(shù)
(1)求a的值;
(2)當(dāng)0≤x≤1時(shí),關(guān)于x的方程f(x)+1=t有解,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=kax﹣a﹣x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)若f(1)>0,試求不等式f(x2+2x)+f(x﹣4)>0的解集;
(2)若f(1)= ,且g(x)=a2x+a﹣2x﹣2mf(x)在[1,+∞)上的最小值為﹣2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈[1,2],x2≥a;命題q:x∈R,x2+2ax+2﹣a=0,若命題p∧q是真命題,則實(shí)數(shù)a的取值范圍是( )
A.a≤﹣2或a=1
B.a≤﹣2或1≤a≤2
C.a≥1
D.﹣2≤a≤1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)圖象上不同兩點(diǎn)A(x1 , y1),B(x2 , y2)處的切線的斜率分別是kA , kB , 規(guī)定φ(A,B)= 叫曲線y=f(x)在點(diǎn)A與點(diǎn)B之間的“彎曲度”,給出以下命題: 1)函數(shù)y=x3﹣x2+1圖象上兩點(diǎn)A、B的橫坐標(biāo)分別為1,2,則φ(A,B)> ;
2)存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù);
3)設(shè)點(diǎn)A、B是拋物線,y=x2+1上不同的兩點(diǎn),則φ(A,B)≤2;
4)設(shè)曲線y=ex上不同兩點(diǎn)A(x1 , y1),B(x2 , y2),且x1﹣x2=1,若tφ(A,B)<1恒成立,則實(shí)數(shù)t的取值范圍是(﹣∞,1);
以上正確命題的序號為(寫出所有正確的)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2+ ,則f(﹣1)=( )
A.2
B.1
C.0
D.﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)(x≠0)對于任意的x,y∈R且x,y≠0滿足f(xy)=f(x)+f(y).
(1)求f(1),f(﹣1)的值;
(2)求證:y=f(x)為偶函數(shù);
(3)若y=f(x)在(0,+∞)上是增函數(shù),解不等式 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,A={x|2x2﹣x=0},B={x|mx2﹣mx﹣1=0},其中x∈R,如果(UA)∩B=,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com