3.橢圓$\frac{x^2}{4}$+y2=1的焦距為2$\sqrt{3}$.

分析 求出橢圓的幾何量,然后求解焦距即可.

解答 解:橢圓$\frac{x^2}{4}$+y2=1的長半軸a=2,短半軸為b=1,則c=$\sqrt{4-1}$=$\sqrt{3}$.
橢圓的焦距為:2$\sqrt{3}$.
故答案為:2$\sqrt{3}$.

點(diǎn)評 本題考查橢圓的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖為某算法的程序框圖,該算法的程序運(yùn)行后輸出的結(jié)果為299,則實(shí)數(shù)M的取值范圍是( 。
A.296<M<299B.296≤M<299C.296<M≤299D.296≤M≤299

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知方程$\frac{x^2}{m^2+n}$-$\frac{y^2}{3m^2-n}$=1表示雙曲線,且該雙曲線兩焦點(diǎn)間的距離為4,則n的取值范圍是( 。
A.(-1,3)B.(-1,$\sqrt{3}$)C.(0,3)D.(0,$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{x-3≤0}\end{array}\right.$,則z=x-2y的最小值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)$\frac{1+2i}{2-i}$=( 。
A.iB.1+iC.-iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.計(jì)算不定積分${∫}_{\;}^{\;}$($\frac{2{x}^{2}+2x-1}{\sqrt{x}}$)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,直線y=x與橢圓C交于點(diǎn)E,F(xiàn),直線y=-x與橢圓C交于點(diǎn)G,H,且四邊形EHFG的面積為$\frac{16}{5}$.
(1)求橢圓C的方程;
(2)過橢圓C的左頂點(diǎn)A作直線l1交橢圓C于另一點(diǎn)P,過點(diǎn)A作垂直于l1的直線l1,l2交橢圓C于另一點(diǎn)Q,當(dāng)直線l1的斜率變化時,直線PQ是否過x軸上的一定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)的坐標(biāo),若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.復(fù)數(shù)z=(1+2i)(3-i),其中i為虛數(shù)單位,則z的實(shí)部是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若cosA=$\frac{4}{5}$,cosC=$\frac{5}{13}$,a=1,則b=$\frac{21}{13}$.

查看答案和解析>>

同步練習(xí)冊答案