若變量x、y滿足約束條件
x2+y2≤1
x≥0
y≥0
,則z=x+2y的最大值M=
 
考點:簡單線性規(guī)劃
專題:數(shù)形結(jié)合,不等式的解法及應(yīng)用
分析:由題意畫出可行域,數(shù)形結(jié)合得到使z=x+2y取得最大值的直線x+2y-z=0的位置,由點到直線的距離公式求得z=x+2y的最大值M.
解答: 解:由約束條件
x2+y2≤1
x≥0
y≥0
作出可行域如圖,

由圖可知,當(dāng)直線y=-
1
2
x+
z
2
與圓相切時直線在y軸上的截距最大,z最大,
化目標(biāo)函數(shù)z=x+2y為x+2y-z=0,
由原點到直線x+2y-z=0的距離等于半徑得:
|-z|
5
=1
,即z的最大值M為
5

故答案為:
5
點評:本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,訓(xùn)練了點到直線的距離公式的應(yīng)用,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于任意的實數(shù)a(a≠0)和b,不等式|a+b|+|a-b|≥|a|k恒成立,則實數(shù)k的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

運行如圖所示的程序框圖,輸出的結(jié)果S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公比大于1的等比數(shù)列,且a1=1,a3=9.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=log3an+n+2,且b1+b2+…+bn≥80,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax+3,f(-m)=1,則f(m)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意實數(shù)x、y、z定義運算“*”:x*y=
3x3y+3x2y2+xy3+45
(x+1)3+(y+1)3-60
;且x*y*z=(x*y)*z,則:2013*2012*…*3*2的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足;
4
x4
-
2
x2
=3,y4+y2=3,則
4
x4+y4
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項和為Sn=c-(
1
2
)
n-1
,則數(shù)列{an}是等比數(shù)列的充要條件
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正整數(shù)a,b,c滿足a+b2-2c-2=0,3a2-8b+c=0,則abc的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案