分析 根據三棱柱的底面邊長及高,先得出棱柱底面外接圓的半徑及球心距,進而求出三棱柱外接球的球半徑,代入球的表面積公式即可得到棱柱的外接球的表面積.
解答 解:由正三棱柱的底面邊長為2$\sqrt{3}$,
得底面所在平面截其外接球所成的圓O的半徑r=2,
又由正三棱柱的高為2,則球心到圓O的球心距d=1,
根據球心距,截面圓半徑,球半徑構成直角三角形,
滿足勾股定理,我們易得球半徑R滿足:
R2=r2+d2=5,
∴外接球的表面積S=4πR2=4π×5=20π.
故答案為:20π.
點評 本題考查的是棱柱的幾何特征及球的體積和表面積,考查數形結合思想、化歸與轉化思想,其中根據已知求出三棱柱的外接球半徑是解答本題的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | $5-2\sqrt{5}$ | B. | $5+2\sqrt{5}$ | C. | $\sqrt{3}+1$ | D. | $\sqrt{3}-1$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$ | B. | (x+$\frac{3}{4}$)2+y2=$\frac{25}{16}$ | C. | (x-$\frac{3}{4}$)2+y2=$\frac{25}{16}$ | D. | (x-$\frac{3}{4}$)2+y2=$\frac{25}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{6}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 9個 | B. | 8個 | C. | 5個 | D. | 4個 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com