A. | 3 | B. | 2 | C. | -2 | D. | -3 |
分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過(guò)平移即可求z的最大值和最小值.建立方程關(guān)系進(jìn)行求解即可.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域,
由$\left\{\begin{array}{l}{y-x=3}\\{x+y=5}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$,即A(1,4),
由$\left\{\begin{array}{l}{y-x=3}\\{y=m}\end{array}\right.$得$\left\{\begin{array}{l}{x=m-3}\\{y=m}\end{array}\right.$,
由z=x+4y,得y=-$\frac{1}{4}x+\frac{z}{4}$,
平移直線y=-$\frac{1}{4}x+\frac{z}{4}$,由圖象可知當(dāng)直線y=-$\frac{1}{4}x+\frac{z}{4}$經(jīng)過(guò)點(diǎn)A時(shí),直線y=-$\frac{1}{4}x+\frac{z}{4}$的截距最大,此時(shí)z最大.
z=1+4×4=17
當(dāng)直線y=-$\frac{1}{4}x+\frac{z}{4}$經(jīng)過(guò)點(diǎn)B時(shí),直線y=-$\frac{1}{4}x+\frac{z}{4}$的截距最小,此時(shí)z最。畓=m-3+4m=5m-3.
∵z=x+4y的最大值與最小值得差為5
∴17-(5m-3)=20-5m=5.
得m=3.
故選:A.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)的幾何意義求出最值是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 函數(shù)y=f(sinx)是奇函數(shù),也是周期函數(shù) | |
B. | 函數(shù)y=f(sinx)是偶函數(shù),不是周期函數(shù) | |
C. | 函數(shù)y=f(sin$\frac{1}{x}$)是偶函數(shù),但不是周期函數(shù) | |
D. | 函數(shù)y=f(sin$\frac{1}{x}$)是偶函數(shù),也是周期函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com