【題目】已知f(x)=x2﹣3,g(x)=mex , 若方程f(x)=g(x)有三個不同的實根,則m的取值范圍是( )
A.
B.
C.
D.(0,2e)
【答案】A
【解析】解:設(shè)f(x)與g(x)的共同切線的切點為(x0 , y0), ∵f(x)=x2﹣3,g(x)=mex ,
∴f′(x)=2x,g(x)=mex ,
∴f′(x0)=g′(x0),f(x0)=g(x0),
∴2x0= ,x02﹣3= ,
∴x0=x02﹣3,
解得x0=3,或x0=﹣1(舍去)
當(dāng)x0=3,
∴6=me3 , 即m= ,
∵方程f(x)=g(x)有三個不同的實根,由圖象可知,
∴0<m< ,
故選:A.
設(shè)f(x)與g(x)的共同切線的切點為(x0 , y0),根據(jù)導(dǎo)數(shù)求出切點,即可求出m的值,結(jié)合圖象可知m的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,AD∥BC,AD=2BC=2,PC=2,△ABC是以AC為斜邊的等腰直角三角形,E是PD的中點.
(1)求證:平面EAC⊥平面PCD;
(2)求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和,,,(且), , .
(I)求;
(Ⅱ)猜想數(shù)列的通項公式,并證明;
(Ⅲ)設(shè)函數(shù),若對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,點P(0, ),以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為 .直線l的參數(shù)方程為 為參數(shù)).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)設(shè)直線l與曲線C的兩個交點分別為A,B,求 + 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在(﹣∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有xf′(x)>x2+3f(x),則不等式8f(x+2014)+(x+2014)3f(﹣2)>0的解集為( )
A.(﹣∞,﹣2016)
B.(﹣2018,﹣2016)
C.(﹣2018,0)
D.(﹣∞,﹣2018)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 ﹣ =1(a>0,b>0)的實軸端點分別為A1 , A2 , 記雙曲線的其中的一個焦點為F,一個虛軸端點為B,若在線段BF上(不含端點)有且僅有兩個不同的點Pi(i=1,2),使得∠A1PiA2= ,則雙曲線的離心率e的取值范圍是( )
A.( , )
B.( , )
C.(1, )
D.( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且 .
(1)求sinB的值;
(2)若D為AC的中點,且BD=1,求△ABD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖像是由函數(shù)的圖像經(jīng)如下變換得到:先將圖像上所有點的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變),再將所得到的圖像向右平移個單位長度.
(Ⅰ)求函數(shù)的解析式,并求其圖像的對稱軸方程;
(Ⅱ)已知關(guān)于的方程在內(nèi)有兩個不同的解.
(1)求實數(shù)m的取值范圍;
(2)證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com