【題目】已知數(shù)列,,,(), , .

(I)求;

(Ⅱ)猜想數(shù)列的通項公式,并證明;

(Ⅲ)設函數(shù),若對任意恒成立,求的取值范圍.

【答案】(1)(2)(3)

【解析】分析:(1)直接將代入遞推公式,即可的結果;(2)先證明是以為首項,為公比的等比數(shù)列,可得,: ;(3)原不等式等價于恒成立,所以,判斷的符號,可得 結合函數(shù)的單調性,即可的結果.

詳解(1)

(2)猜想:

證明:由提意

所以,即對所有都成立,

易知,所以是以為首項,以為公比的等比數(shù)列

所以,即:

(3)

,所以,

恒成立,所以

因為遞減, 遞增,所以

遞減, 遞增.

又因為 ,當,當

,所以 ,而當

時,.

所以 ,所以,

注意到,所以當時, ,而,所以,即

,所以

綜上.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】平面α過正方體ABCD﹣A1B1C1D1的面對角線 ,且平面α⊥平面C1BD,平面α∩平面ADD1A1=AS,則∠A1AS的正切值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若不等式的解集為,求實數(shù)的值;

(2)若不等式對一切實數(shù)恒成立,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一(1)班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖,且將全班人的成績記為由右邊的程序運行后,輸出.據(jù)此解答如下問題:

注:圖中表示“是”,表示“否”

(1)求莖葉圖中破損處分數(shù)在,各區(qū)間段的頻數(shù);

(2)利用頻率分布直方圖估計該班的數(shù)學測試成績的眾數(shù),中位數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形 中, ,點 的中點, 為線段 (端點除外)上一動點.現(xiàn)將 沿 折起,使得平面 平面 .設直線 與平面 所成角為 ,則 的最大值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在四棱錐C﹣ABDE中,DB⊥平面ABC,AE∥DB,△ABC是邊長為2的等邊三角形,AE=1,M為AB的中點.
(1)求證:CM⊥EM;
(2)若直線DM與平面ABC所成角的正切值為2,求二面角B﹣CD﹣E的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明家訂了一份報紙,送報人可能在早上6 : 30至7 : 30之間把報紙送到小明家,小明離開家去上學的時間在早上7 : 00至8 : 30之間,問小明在離開家前能得到報紙(稱為事件)的概率是多少( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=x2﹣3,g(x)=mex , 若方程f(x)=g(x)有三個不同的實根,則m的取值范圍是(
A.
B.
C.
D.(0,2e)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為實數(shù),設函數(shù),設

(1)求的取值范圍,并把表示為的函數(shù);

(2)若恒成立,求實數(shù)的取值范圍;

(3)若存在使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案