16.已知$\frac{\overline z}{1+2i}=2+i$,則復(fù)數(shù)z+5的實部與虛部的和為( 。
A.10B.-10C.0D.-5

分析 利用復(fù)數(shù)的運算法則、實部與虛部的定義、共軛復(fù)數(shù)的定義即可得出.

解答 解:$\frac{\overline z}{1+2i}=2+i$,∴$\overline{z}$=(1+2i)(2+i)=5i,可得z=-5i
則復(fù)數(shù)z+5=5-5i的實部與虛部的和為:5-5=0.
故選:C.

點評 本題考查了復(fù)數(shù)的運算法則、實部與虛部的定義、共軛復(fù)數(shù)的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$,過x軸上點P的直線l與雙曲線的右支交于M,N兩點(M在第一象限),直線MO交雙曲線左支于點Q(O為坐標(biāo)原點),連接QN.若∠MPO=60°,∠MNQ=30°,則該雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.(2-i)(-2+i)=( 。
A.-5B.-3+4iC.-3D.-5+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={x|x2-2x-3<0},B={x|y=ln(2-x)},則A∩B=( 。
A.{x|-1<x<3}B.{x|-1<x<2}C.{x|-3<x<2}D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.圓C1:x2+y2+2ax+a2-9=0和圓C2:x2+y2-4by-1+4b2=0只有一條公切線,若a∈R,b∈R,且ab≠0,則$\frac{4}{a^2}+\frac{1}{b^2}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$|\overrightarrow a|=1$,$|\overrightarrow a+\overrightarrow b|=\sqrt{7}$,$\overrightarrow a•(\overrightarrow b-\overrightarrow a)=-4$,則$\overrightarrow a$與$\overrightarrow b$夾角是$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個幾何體的三視圖如右圖所示,其中俯視圖是一個正三角形及其內(nèi)切圓,則該幾何體的體積為( 。
A.$16\sqrt{3}-\frac{16π}{3}$B.$\frac{{16\sqrt{3}-16π}}{3}$C.$8\sqrt{3}-\frac{8π}{3}$D.$\frac{{8\sqrt{3}-8π}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點F(-c,0)(c>0)作圓${x^2}+{y^2}=\frac{a^2}{4}$的切線,切點為E,延長FE交雙曲線右支于點P.若$\overrightarrow{OP}=2\overrightarrow{OE}-\overrightarrow{OF}$,則雙曲線的漸近線方程為( 。
A.$\sqrt{10}x±2y=0$B.$2x±\sqrt{10}y=0$C.$\sqrt{6}x±2y=0$D.$2x±\sqrt{6}y=0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列四個結(jié)論:
①若x>0,則x>sinx恒成立;
②命題“若x-sinx=0,則x=0”的逆否命題為“若x≠0,則x-sinx≠0”;
③“命題p∧q為真”是“命題p∨q為真”的充分不必要條件;
④命題“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”.
其中正確結(jié)論的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案