20.一橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別為F1(0,-8),F(xiàn)2(0,8),且橢圓上的一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為20,則此橢圓的標(biāo)準(zhǔn)方程為( 。
A.$\frac{x^2}{100}$+$\frac{y^2}{36}$=1B.$\frac{y^2}{400}$+$\frac{x^2}{336}$=1C.$\frac{y^2}{100}$+$\frac{x^2}{36}$=1D.$\frac{y^2}{20}$+$\frac{x^2}{12}$=1

分析 由題意可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0).可得c=8,2a=20,b2=a2-c2,聯(lián)立解出即可得出.

解答 解:由題意可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0).
則c=8,2a=20,b2=a2-c2,
聯(lián)立解得a=10,b=6.
∴橢圓的標(biāo)準(zhǔn)方程為:$\frac{{y}^{2}}{100}$+$\frac{{x}^{2}}{36}$=1.
故選:C.

點(diǎn)評(píng) 本題考查了橢圓的定義、標(biāo)準(zhǔn)方程及其性質(zhì),考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)y=y1+y2,y1與x2成正比例函數(shù),y2與x成反比例函數(shù),且當(dāng)x=1時(shí),y=3;當(dāng)x=-1時(shí),y=1,求x=3時(shí)y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若橢圓$\frac{x^2}{4}+{y^2}$=1上一點(diǎn)到左焦點(diǎn)的距離為1,則該點(diǎn)到右焦點(diǎn)的距離為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知等比數(shù)列{an}各項(xiàng)都為正數(shù),且滿足a2=2,a6=6,a4=(  )
A.4B.8C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a<0,函數(shù)f(x)=ax2+bx+c,若x0滿足2ax+b=0,則下列必為真命題的是( 。
A.?x∈R,f(x)>f(x0B.?x∈R,f(x-1)≥f(x0C.?x∈R,f(x)≤f(x0D.?x∈R,f(x+1)≥f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知{an}為等差數(shù)列,{bn}為正項(xiàng)等比數(shù)列,公比q≠1,若a1=b1,a13=b13,則(  )
A.a7=b7B.a7>b7C.a7<b7D.a7>b7或a7<b7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,四棱錐P-ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn).
(1)證明PA∥平面BDE;
(2)證明:DE⊥面PBC;
(3)求直線AB與平面PBC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.兩直線x-2y+7=0和2x+y-1=0的交點(diǎn)坐標(biāo)為( 。
A.(1,3)B.(-1,3)C.(3,-1)D.(-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知p:|m-$\frac{x-1}{3}}$|≤2;q:|x-2|+|x-3|>3.若¬p是¬q的必要不充分條件.求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案