(注意:在試題卷上作答無效)
已知橢圓的方程為,長軸是短軸的2倍,且橢圓過點,斜率為的直線過點,為直線的一個法向量,坐標平面上的點滿足條件.
(1)寫出橢圓方程,并求點到直線的距離;
(2)若橢圓上恰好存在3個這樣的點,求的值.
解:(1)由題意得 解得 ∴橢圓方程為: …2分
直線的方程為,其一個法向量,設(shè)點B的坐標為,由及 得
∴到直線的距離為 …………5分
(2)由(1)知,點B是橢圓上到直線的距離為1的點,即與直線的距離為1的二條平行線與橢圓恰好有三個交點。 設(shè)與直線平行的直線方程為
由得,即
………①
當時,………② , 又由兩平行線間的距離為1,可得………③
把②代入③得,即,,即,或
當時,代入②得,代回③得或
當,時,由①知
此時兩平行線和與橢圓只有一個交點,不合題意;
當時,代入②得,代回③得或
當,時,由①知
此時兩平行線和,與橢圓有三個交點,∴ …12分
科目:高中數(shù)學 來源:2012-2013學年湖北省高三9月月考數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)(注意:在試題卷上作答無效)
已知曲線,從上的點作軸的垂線,交于點,再從點作軸的垂線,交于點,設(shè)
(1)求數(shù)列的通項公式;
(2)記,數(shù)列的前項和為,試比較與的大小;
(3)記,數(shù)列的前項和為,試證明:
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年四川省高考壓軸理科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)(注意:在試題卷上作答無效)
已知曲線,從上的點作軸的垂線,交于點,再從點作軸的垂線,交于點,設(shè)
(1)求數(shù)列的通項公式;
(2)記,數(shù)列的前項和為,試比較與的大小;
(3)記,數(shù)列的前項和為,試證明:
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年四川省高考壓軸理科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)(注意:在試題卷上作答無效)
已知橢圓的左、右焦點分別為,若以為圓心,為半徑作圓,過橢圓上一點作此圓的切線,切點為,且的最小值不小于為.
(1)求橢圓的離心率的取值范圍;
(2)設(shè)橢圓的短半軸長為,圓與軸的右交點為,過點作斜率為的直線與橢圓相交于兩點,若,求直線被圓截得的弦長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年廣西省南寧市高三第二次適應(yīng)性考試數(shù)學理卷 題型:解答題
(本小題共12分)(注意:在試題卷上作答無效)
已知拋物線上一動點P,拋物線內(nèi)一點A(3,2) ,F為焦點且的最小值為.
(1)求拋物線的方程以及使得取最小值時的P點坐標;
(2)過(1)中的P點作兩條互相垂直的直線與拋物線分別交于C、D兩點,直線CD是否過一定點?若是,求出該定點的坐標,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)(注意:在試題卷上作答無效)
過拋物線的對稱軸上一點的直線與拋物線相交于M、N兩點,自M、N向直線作垂線,垂足分別為、。
(Ⅰ)當時,求證:⊥;
(Ⅱ)記、 、的面積分別為、、,是否存在,使得對任意的,都有成立。若存在,求出的值;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com