已知等差數(shù)列{an}的公差為2,若a1,a3,a4成等比數(shù)列,則a1等于
-8
-8
分析:直接利用a1,a3,a4成等比數(shù)列求出首項和公差的關(guān)系,再把公差代入即可求出a1
解答:解:因為a1,a3,a4成等比數(shù)列,
所以有a32=a1•a4⇒(a1+2d)2=a1•(a1+3d)⇒a1•d=-4d2
又因為d=2,所以a1=-8.
故答案為:-8.
點評:本題考查等差數(shù)列與等比數(shù)列的基礎(chǔ)知識,考查方程思想在解決數(shù)列問題中的應(yīng)用.在等差數(shù)列、等比數(shù)列問題中基本量是解題的關(guān)鍵,一般是根據(jù)已知條件把基本量求出來,然后在解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊答案