【題目】在每年的3月份,濮陽(yáng)市政府都會(huì)發(fā)動(dòng)市民參與到植樹綠化活動(dòng)中去林業(yè)管理部門為了保證樹苗的質(zhì)量都會(huì)在植樹前對(duì)樹苗進(jìn)行檢測(cè),現(xiàn)從甲、乙兩種樹苗中各抽測(cè)了株樹苗,量出它們的高度如下(單位:厘米),

甲:37,21,31,20,29,19,32,23,25,33;

乙:10,30,47,27,46,14,26,10,44,46.

(1)畫出兩組數(shù)據(jù)的莖葉圖并根據(jù)莖葉圖對(duì)甲、乙兩種樹苗的高度作比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論;

(2)設(shè)抽測(cè)的株甲種樹苗高度平均值為,將這株樹苗的高度依次輸人,按程序框(如圖)進(jìn)行運(yùn)算,問輸出的大小為多少?并說(shuō)明的統(tǒng)計(jì)學(xué)意義,

【答案】(1)見解析;(2)見解析

【解析】分析:(1)畫出莖葉圖,通過(guò)圖能判斷甲,乙兩種樹苗的平均高度、分散情況、中位數(shù)的值.

(2)直接利用均值與方差公式求解,說(shuō)明幾何意義即可.

詳解:(1)莖葉圖:

統(tǒng)計(jì)結(jié)論:(答案不唯一,任意兩個(gè)即可)

①甲種樹苗的平均高度小于乙種樹苗的平均高度;

②甲種樹苗比乙種樹苗長(zhǎng)得整齊;

③甲種樹苗的中位數(shù)為,乙種樹苗的中位數(shù)為;

④甲種樹苗的高度基本上是對(duì)稱的,而且大多數(shù)集中在平均數(shù)附近,乙種樹苗的高度分布比較分散.

(2)根據(jù)十個(gè)數(shù)據(jù)求得:,

由框圖可求得,

表示株甲種樹苗高度的方差.越小,表示長(zhǎng)得越整齊,值越大,表示長(zhǎng)得越參差不齊.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn,且=9S6=60

(I)求數(shù)列{an}的通項(xiàng)公式;

II)若數(shù)列{bn}滿足bn+1bn=n∈N+)且b1=3,求數(shù)列的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列中, ,且.

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線,,則下面結(jié)論正確的是( )

A. 上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

B. 上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

C. 上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

D. 上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對(duì)角線的交點(diǎn),GPB的中點(diǎn).

(1)根據(jù)三視圖,畫出該幾何體的直觀圖.

(2)在直觀圖中,①證明:PD∥平面AGC;

②證明:平面PBD⊥平面AGC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足,,設(shè)

1)求;

2)判斷數(shù)列是否為等比數(shù)列,并說(shuō)明理由;

3)求的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),數(shù)列滿足, .

(Ⅰ)當(dāng)時(shí),求證:數(shù)列為等差數(shù)列并求;

(Ⅱ)證明:對(duì)于一切正整數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】盒子里放有外形相同且編號(hào)為1,2,3,4,5的五個(gè)小球,其中1號(hào)與2號(hào)是黑球,3號(hào)、4號(hào)與5號(hào)是紅球,從中有放回地每次取出1個(gè)球,共取兩次.

(1)求取到的2個(gè)球中恰好有1個(gè)是黑球的概率;

(2)求取到的2個(gè)球中至少有1個(gè)是紅球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列的前項(xiàng)和記為 ,點(diǎn)在直線上,

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè) , 是數(shù)列的前項(xiàng)和,求

查看答案和解析>>

同步練習(xí)冊(cè)答案