【題目】設(shè)函數(shù)f(x)的定義域?yàn)镽,f(x)= ,且對(duì)任意的x∈R都有f(x+1)=﹣ ,若在區(qū)間[﹣5,1]上函數(shù)g(x)=f(x)﹣mx+m恰有5個(gè)不同零點(diǎn),則實(shí)數(shù)m的取值范圍是(
A.[﹣ ,﹣
B.(﹣ ,﹣ ]
C.(﹣ ,0]
D.(﹣ ,﹣ ]

【答案】A
【解析】解:∵f(x+1)=﹣ ,∴f(x+2)=﹣ , ∴f(x)=f(x+2),即f(x)的周期為2.
作出f(x)在[﹣5,1]上的函數(shù)圖象如圖所示:

令g(x)=0得f(x)=mx﹣m,
則直線y=mx﹣m與f(x)在[﹣5,1]上有5個(gè)交點(diǎn).
當(dāng)直線y=mx﹣m過(guò)點(diǎn)(﹣3,1)時(shí),直線y=mx﹣m與f(x)在[﹣5,1]上恰好有5個(gè)交點(diǎn),
此時(shí)﹣3m﹣m=1,即m=﹣ ,
當(dāng)直線y=mx﹣m過(guò)點(diǎn)(﹣5,1)時(shí),直線y=mx﹣m與f(x)在[﹣5,1]上恰好有6個(gè)交點(diǎn),
此時(shí)﹣5m﹣m=1,即m=﹣
∴﹣ ≤m<﹣
故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|3≤3x≤27},
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|1<x<a},若CA,求實(shí)數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=4sinωxsin(ωx+ )﹣1(ω>0),f(x)的最小正周期為π. (Ⅰ)當(dāng)x∈[0, ]時(shí),求f(x)的最大值;
(Ⅱ)請(qǐng)用“五點(diǎn)作圖法”畫(huà)出f(x)在[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為4的菱形中,,現(xiàn)沿對(duì)角線折起,折起后使的余弦值為

(1)求證:平面平面

(2)若的中點(diǎn),求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有長(zhǎng)分別為1m、2m、3m的鋼管各3根(每根鋼管質(zhì)地均勻、粗細(xì)相同附有不同的編號(hào)),從中隨機(jī)抽取2根(假設(shè)各鋼管被抽取的可能性是均等的),再將抽取的鋼管相接焊成筆直的一根.若X表示新焊成的鋼管的長(zhǎng)度(焊接誤差不計(jì)).
(1)求X的分布列;
(2)若Y=﹣λ2X+λ+1,E(Y)>1,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的焦距為2,且過(guò)點(diǎn).

(1)求橢圓的方程;

(2)若點(diǎn)分別是橢圓的左右頂點(diǎn),直線經(jīng)過(guò)點(diǎn)且垂直與軸,點(diǎn)是橢圓上異于的任意一點(diǎn),直線于點(diǎn).

①設(shè)直線的斜率為,直線的斜率為,求證:為定值;

②設(shè)過(guò)點(diǎn)垂直于的直線為 ,求證:直線過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) (為自然對(duì)數(shù)的底數(shù)),.

(1)證明:當(dāng)時(shí), 沒(méi)有零點(diǎn);

(2)若當(dāng)時(shí), 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:x2+(y﹣1)2=5,直線l:mx﹣y+1﹣m=0. (Ⅰ)求證:對(duì)m∈R,直線l與圓C總有兩個(gè)不同交點(diǎn);
(Ⅱ)設(shè)l與圓C交與不同兩點(diǎn)A、B,求弦AB的中點(diǎn)M的軌跡方程;
(Ⅲ)若定點(diǎn)P(1,1)分弦AB為 = ,求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 若對(duì)任意的正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱{an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項(xiàng)和為Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設(shè){an}是等差數(shù)列,其首項(xiàng)a1=1,公差d<0,若{an}是“H數(shù)列”,求d的值;
(3)證明:對(duì)任意的等差數(shù)列{an},總存在兩個(gè)“H數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案