【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 若對任意的正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱{an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項(xiàng)和為Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設(shè){an}是等差數(shù)列,其首項(xiàng)a1=1,公差d<0,若{an}是“H數(shù)列”,求d的值;
(3)證明:對任意的等差數(shù)列{an},總存在兩個“H數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
【答案】
(1)解:當(dāng)n≥2時,an=Sn﹣Sn﹣1=2n﹣2n﹣1=2n﹣1,
當(dāng)n=1時,a1=S1=2.
當(dāng)n=1時,S1=a1.
當(dāng)n≥2時,Sn=an+1.
∴數(shù)列{an}是“H”數(shù)列
(2)解:Sn= = ,
對n∈N*,m∈N*使Sn=am,即 ,
取n=2時,得1+d=(m﹣1)d,解得 ,
∵d<0,∴m<2,
又m∈N*,∴m=1,∴d=﹣1
(3)證明:設(shè){an}的公差為d,令bn=a1﹣(n﹣1)a1=(2﹣n)a1,
對n∈N*,bn+1﹣bn=﹣a1,
cn=(n﹣1)(a1+d),
對n∈N*,cn+1﹣cn=a1+d,
則bn+cn=a1+(n﹣1)d=an,且數(shù)列{bn}和{cn}是等差數(shù)列.
數(shù)列{bn}的前n項(xiàng)和Tn= ,
令Tn=(2﹣m)a1,則 .
當(dāng)n=1時,m=1;當(dāng)n=2時,m=1.
當(dāng)n≥3時,由于n與n﹣3的奇偶性不同,即n(n﹣3)為非負(fù)偶數(shù),m∈N*.
因此對n∈N*,都可找到m∈N*,使Tn=bm成立,即{bn}為H數(shù)列.
數(shù)列{cn}的前n項(xiàng)和Rn= ,
令cm=(m﹣1)(a1+d)=Rn,則m= .
∵對n∈N*,n(n﹣3)為非負(fù)偶數(shù),∴m∈N*.
因此對n∈N*,都可找到m∈N*,使Rn=cm成立,即{cn}為H數(shù)列.
因此命題得證
【解析】(1)利用“當(dāng)n≥2時,an=Sn﹣Sn﹣1 , 當(dāng)n=1時,a1=S1”即可得到an , 再利用“H”數(shù)列的意義即可得出.(2)利用等差數(shù)列的前n項(xiàng)和即可得出Sn , 對n∈N* , m∈N*使Sn=am , 取n=2和根據(jù)d<0即可得出;(3)設(shè){an}的公差為d,構(gòu)造數(shù)列:bn=a1﹣(n﹣1)a1=(2﹣n)a1 , cn=(n﹣1)(a1+d),可證明{bn}和{cn}是等差數(shù)列.再利用等差數(shù)列的前n項(xiàng)和公式及其通項(xiàng)公式、“H”的意義即可得出.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域?yàn)镽,f(x)= ,且對任意的x∈R都有f(x+1)=﹣ ,若在區(qū)間[﹣5,1]上函數(shù)g(x)=f(x)﹣mx+m恰有5個不同零點(diǎn),則實(shí)數(shù)m的取值范圍是( )
A.[﹣ ,﹣ )
B.(﹣ ,﹣ ]
C.(﹣ ,0]
D.(﹣ ,﹣ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.
(1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;
(2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為,答對文科題的概率均為,若每題答對得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),橢圓C1: + =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 離心率為e1;雙曲線C2: ﹣ =1的左、右焦點(diǎn)分別為F3 , F4 , 離心率為e2 , 已知e1e2= ,且|F2F4|= ﹣1.
(1)求C1、C2的方程;
(2)過F1作C1的不垂直于y軸的弦AB,M為AB的中點(diǎn),當(dāng)直線OM與C2交于P,Q兩點(diǎn)時,求四邊形APBQ面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長方體ABCD﹣A'B'C'D'中,AB=4,AD=3,AA'=2;
(1)求出異面直線AC'和BD所成角的余弦值;
(2)找出AC'與平面D'DBB'的交點(diǎn),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C、D為圓O上的四點(diǎn),直線DE為圓O的切線,AC∥DE,AC與BD相交于H點(diǎn).
(1)求證:BD平分∠ABC;
(2)若AB=4,AD=6,BD=8,求AH的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的一個焦點(diǎn)與拋物線的焦點(diǎn)相同, ,為橢圓的左、右焦點(diǎn).為橢圓上任意一點(diǎn),△面積的最大值為1.
(1)求橢圓的方程;
(2)直線:交橢圓于,兩點(diǎn).
(i)若直線與的斜率分別為,,且,求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(ii)若直線的斜率時直線,斜率的等比中項(xiàng),求△面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足a1=1,an+1=2an+1(n∈N*)
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)求{an}的通項(xiàng)公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com