“x≥3”是“(x-2)
x2-2x-3
≥0
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件
分析:對(duì)被開方數(shù)分類討論,求出不等式(x-2)
x2-2x-3
≥0
等價(jià)學(xué)生;再判斷前者能否推出后者;后者能否推出前者,有充要條件的定義判斷出結(jié)論.
解答:解:(x-2)
x2-2x-3
≥0
等價(jià)于
x2-2x-3=0或
x2-2x-3>0
x-2≥0

解得x≥3或x=-1
當(dāng)x≥3成立時(shí),x≥3或x=-1一定成立
當(dāng)x≥3或x=-1成立時(shí),不一定有x≥3
故選A
點(diǎn)評(píng):本題考查判斷條件問(wèn)題時(shí),先將各條件化簡(jiǎn);注意化簡(jiǎn)“≥”或“≤”的不等式時(shí),要對(duì)”=“單獨(dú)討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(1-x)=f(-x-3),當(dāng)0≤x≤2時(shí),f(x)=
x
2
,那使f(x)=
1
2
成立的x的集合為( 。
A、{x|x=2n,n∈Z}
B、{x|x=2n-1,n∈Z}
C、{x|x=4n-1,n∈Z}
D、{x|x=4n+1,n∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個(gè)極值點(diǎn).求:
(I)實(shí)數(shù)a的值;  
(Ⅱ)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=log2(x+3)的反函數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•河北區(qū)一模)集合A={x|-3<x<5},B={x|x<1或x>4},則?RA∩?RB是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•浦東新區(qū)二模)已知函數(shù)y=f(x),x∈D,如果對(duì)于定義域D內(nèi)的任意實(shí)數(shù)x,對(duì)于給定的非零常數(shù)m,總存在非零常數(shù)T,恒有f(x+T)>m•f(x)成立,則稱函數(shù)f(x)是D上的m級(jí)類增周期函數(shù),周期為T.若恒有f(x+T)=m•f(x)成立,則稱函數(shù)f(x)是D上的m級(jí)類周期函數(shù),周期為T.
(1)試判斷函數(shù)f(x)=log
12
(x-1)
是否為(3,+∞)上的周期為1的2級(jí)類增周期函數(shù)?并說(shuō)明理由;
(2)已知函數(shù)f(x)=-x2+ax是[3,+∞)上的周期為1的2級(jí)類增周期函數(shù),求實(shí)數(shù)a的取值范圍;
(3)下面兩個(gè)問(wèn)題可以任選一個(gè)問(wèn)題作答,如果你選做了兩個(gè),我們將按照問(wèn)題(Ⅰ)給你記分.
(Ⅰ)已知T=1,y=f(x)是[0,+∞)上m級(jí)類周期函數(shù),且y=f(x)是[0,+∞)上的單調(diào)遞增函數(shù),當(dāng)x∈[0,1)時(shí),f(x)=2x,求實(shí)數(shù)m的取值范圍.
(Ⅱ)已知當(dāng)x∈[0,4]時(shí),函數(shù)f(x)=x2-4x,若f(x)是[0,+∞)上周期為4的m級(jí)類周期函數(shù),且y=f(x)的值域?yàn)橐粋(gè)閉區(qū)間,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案