分析 (Ⅰ)連接AB1與A1B交于點(diǎn)E,則PE∥B1C,由此能證明B1C∥平面A1PB;
(Ⅱ)由已知可得BC⊥平面A1AB,則∠CA1B為A1C與平面AA1B1B所成的角,求解三角形得答案.
解答 (Ⅰ)證明:∵三棱柱ABC-A1B1C1為直三棱柱,
連接AB1與A1B交于點(diǎn)E,∴E為A1B中點(diǎn),
連接PE,∵P為AC的中點(diǎn),∴PE∥B1C
∵PE?A1PB,B1C?A1PB,
∴B1C∥平面A1PB;
(Ⅱ)解:∵三棱柱ABC-A1B1C1 為直三棱柱,
∴A1A⊥BC,
∵AD⊥平面A1BC,∴AD⊥BC,
又A1A∩AD=A,∴BC⊥平面A1AB,
則∠CA1B為A1C與平面AA1B1B所成的角.
在Rt△ADB中,∵AB=2,AD=$\sqrt{3}$,∴BD=1,
∵Rt△A1AB∽R(shí)t△ADB,∴$\frac{DB}{AB}=\frac{AB}{{A}_{1}B}$,則${A}_{1}B=\frac{A{B}^{2}}{DB}=\frac{{2}^{2}}{1}=4$.
在Rt△A1BC中,tan∠CA1B=$\frac{BC}{{A}_{1}B}=\frac{2}{4}=\frac{1}{2}$.
點(diǎn)評(píng) 本題考查直線與平面平行的判斷,考查線面角的求法,注意空間思維能力的培養(yǎng),是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 120 | B. | 60 | C. | 36 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,0)∪(0,1) | B. | (-1,0)∪(1,+∞) | C. | (-∞,-1)∪(1,+∞) | D. | (-∞,-1)∪(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ±$\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | $\sqrt{3}$ | D. | ±3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com