11.設(shè)${(3x+\sqrt{x})}^{n}$的展開(kāi)式的各項(xiàng)系數(shù)之和為M,二項(xiàng)式系數(shù)之和為N,若M-N=240.
(1)求n;
(2)求展開(kāi)式中所有x的有理項(xiàng).

分析 (1)利用賦值法及二項(xiàng)式系數(shù)和公式求出M、N列出方程求得n,
(2)利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出第r+1項(xiàng),令x的指數(shù)為0,2,4得答案.

解答 解:(1)令x=1,M=4n                              
二項(xiàng)系數(shù)之和為2n                            
所以4n-2n=240  得n=4,
(2)Tr+1=34-rC4rx${\;}^{4-\frac{r}{2}}$,0≤r≤4,所以r=0,2,4,
當(dāng)r=0時(shí),T1=34C40x4=81x4,
當(dāng)r=2時(shí),T2=32C42x3=54x3,
當(dāng)r=4時(shí),T1=30C44x2=x2

點(diǎn)評(píng) 本題考查賦值法是求二項(xiàng)展開(kāi)式系數(shù)和的方法;二項(xiàng)式系數(shù)和公式為2n;利用二項(xiàng)展開(kāi)式的通項(xiàng)公式解決二項(xiàng)展開(kāi)式的特定項(xiàng)問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.對(duì)于橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$,下面說(shuō)法正確的是(  )
A.長(zhǎng)軸長(zhǎng)為2B.短軸長(zhǎng)為3C.離心率為$\frac{1}{2}$D.焦距為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖所示,在正方體ABCD-A1B1C1D1中,己知棱長(zhǎng)為a,M,N分別是BD和AD的中點(diǎn),則B1M與D1N所成角的余弦值為( 。
A.-$\frac{\sqrt{15}}{15}$B.$\frac{\sqrt{30}}{10}$C.-$\frac{\sqrt{30}}{10}$D.$\frac{\sqrt{15}}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x)=lnx+$\frac{1}{8}$x2
(1)求曲線f(x)在x=1處的切線方程;
(2)設(shè)P為曲線f(x)上的點(diǎn),求曲線C在點(diǎn)P處切線的斜率的最小值及傾斜角α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在△ABC 中,∠A=60°,a=$\sqrt{13}$,b=4,則滿(mǎn)足條件的△ABC  ( 。
A.有兩個(gè)B.有一個(gè)C.不存在D.有無(wú)數(shù)多個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.(x-2y)6的展開(kāi)式中,x4y2的系數(shù)為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△ABC中,A=60°,b=1,這個(gè)三角形的面積為$\sqrt{3}$,則sin C的值為( 。
A.$\frac{{\sqrt{3}}}{8}$B.$\frac{{\sqrt{15}}}{8}$C.$\frac{{2\sqrt{39}}}{13}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直線A1B上,P為AC的中點(diǎn).
(Ⅰ)求證:B1C∥平面A1PB;
(Ⅱ)若AD=$\sqrt{3}$,AB=BC=2,求直線A1C與平面AA1B1B所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.將五個(gè)1,五個(gè)2,五個(gè)3,五個(gè)4,五個(gè)5共25個(gè)數(shù)填入一個(gè)5行5列的表格內(nèi)(每格填入一個(gè)數(shù)),使得同一行中任何兩數(shù)之差的絕對(duì)值不超過(guò)2.考察每行中五個(gè)數(shù)之和,記這五個(gè)和的最小值為m,則m的最大值為( 。
A.8B.9C.10D.11

查看答案和解析>>

同步練習(xí)冊(cè)答案