10.擲一枚均勻的硬幣4次,則出現(xiàn)“3次正面朝上,1次反面朝上”的概率為( 。
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 利用n次獨立試驗中事件A恰好發(fā)生k次的概率計算公式求解.

解答 解:擲一枚均勻的硬幣4次,
則出現(xiàn)“3次正面朝上,1次反面朝上”的概率為:
P=${C}_{4}^{3}(\frac{1}{2})^{3}(\frac{1}{2})$=$\frac{1}{4}$.
故選:B.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意n次獨立試驗中事件A恰好發(fā)生k次的概率計算公式的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.在△ABC中,如果∠A=60°,c=4,a=$\sqrt{6}$,判斷三角形解的情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如圖,已知橢圓C:$\frac{x^2}{4}+\frac{y^2}{m}$=1(0<m<4)的左頂點為A,點N的坐標為(1,0).若橢圓C上存在點M(點M異于點A),使得點A關(guān)于點M對稱的點P滿足PO=$\sqrt{2}$PN,則實數(shù)m的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,四棱錐P-ABCD中,底面四邊形ABCD是正方形,PA=AB=1,PA⊥平面ABCD,E為棱PB上一點,PD∥平面ACE,過E作PC的垂線,垂足為F.
(Ⅰ)求證:PC⊥平面AEF;
(Ⅱ)求三棱錐P-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合M={0,i}(i是虛數(shù)單位),集合N={x|x2+1=0,x∈C},則集合M∪N=( 。
A.iB.{i}C.{0,i}D.{-i,0,i}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若x、y滿足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{y≥0}\end{array}\right.$,則z=y-$\frac{1}{2}$|x|的最大值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.給出下列四個結(jié)論:
①已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是a=-3b;
②若命題p:?x0∈[1,+∞),x${\;}_{0}^{2}$-x0-1<0,則¬p:?x∈(-∞,1),x2-x-1≥0;
③函數(shù)f(x)=sin2x+$\sqrt{3}$cos2x的一條對稱軸是x=$\frac{7π}{12}$;
④設回歸直線方程為$\widehat{y}$=2-2.5x,當變量x增加一個單位時,y平均增加2個單位.
其中正確結(jié)論的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.2012年中華人民共和國環(huán)境保護部批準《環(huán)境空氣質(zhì)量標準》為國家環(huán)境質(zhì)量標準,該標準增設和調(diào)整了顆粒物、二氧化氮、鉛、笨等的濃度限值,并從2016年1月1日起在全國實施.空氣質(zhì)量的好壞由空氣質(zhì)量指數(shù)確定,空氣質(zhì)量指數(shù)越高,代表空氣污染越嚴重,某市對市轄的某兩個區(qū)加大了對空氣質(zhì)量的治理力度,從2015年11月1日起監(jiān)測了100天的空氣質(zhì)量指數(shù),并按照空氣質(zhì)量指數(shù)劃分為:指標小于或等于115為通過,并引進項目投資.大于115為未通過,并進行治理.現(xiàn)統(tǒng)計如下.
空氣質(zhì)量指數(shù)(0,35][35,75](75,115](115,150](150,250]>250
空氣質(zhì)量類別優(yōu) 良輕度污染中度污染重度污染嚴重污染
甲區(qū)天數(shù)13 204220 32
乙區(qū)天數(shù) 8324016 2 2
(Ⅰ)以頻率值作為概率值,求甲區(qū)和乙區(qū)通過監(jiān)測的概率;
(Ⅱ)對于甲區(qū),若通過,引進項目可增加稅收40(百萬元),若沒通過監(jiān)測,則治理花費5(百萬元);對于乙,若通過,引進項目可增加稅收50(百萬元),若沒通過監(jiān)測,則治理花費10(百萬元)..在(Ⅰ)的前提下,記X為通過監(jiān)測,引進項目增加的稅收總額,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點與拋物線C2:y2=2px(p>0)的焦點F重合,且點F到直線x-y+1=0的距離為$\sqrt{2}$,C1與C2的公共弦長為2$\sqrt{6}$.
(1)求橢圓C1的方程及點F的坐標;
(2)過點F的直線l與C1交于A,B兩點,與C2交于C,D兩點,求$\frac{1}{|\overrightarrow{AB}|}$+$\frac{1}{|\overrightarrow{CD}|}$的取值范圍.

查看答案和解析>>

同步練習冊答案