【題目】若函數(shù)對定義域D內(nèi)的每一個(gè)x1,都存在唯一的x2∈D,使得成立,則稱f (x)為“自倒函數(shù)”.給出下列命題:
①是自倒函數(shù);
②自倒函數(shù)f (x)可以是奇函數(shù);
③自倒函數(shù)f (x)的值域可以是R;
④若都是自倒函數(shù),且定義域相同,則也是自倒函數(shù).
則以上命題正確的是_______(寫出所有正確命題的序號(hào)).
【答案】①②
【解析】為上的單調(diào)函數(shù),否則方程 不止一個(gè)實(shí)數(shù)解.對于①,在是單調(diào)增函數(shù),且其值域?yàn)?/span>,對于任意的,則 ,故 在有唯一解,①正確;對于②,取 , , 的值域?yàn)?/span>,因?yàn)?/span>在和都是單調(diào)減函數(shù),故對于, 有唯一解 , , 為“自倒函數(shù)”,②正確;對于③,如果的值域?yàn)?/span>,取, 無解,③不正確;④取,其中,它們都是“自倒函數(shù)”,但是,這是常數(shù)函數(shù),它不是“自倒函數(shù) ” .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(x+y)=f(x)·f(y)且f(1)=.
(1)當(dāng)n∈N*時(shí),求f(n)的表達(dá)式;
(2)設(shè)an=n·f(n),n∈N*,求證:a1+a2+a3+…+an<2;
(3)設(shè)bn=(9-n) ,n∈N*,Sn為{bn}的前n項(xiàng)和,當(dāng)Sn最大時(shí),求n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角梯形中, , , , , , 底面, 是的中點(diǎn).
(1)求證:平面平面;
(2)若, ,求平面與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們把日均收看體育節(jié)目的時(shí)間超過50分鐘的觀眾稱為“超級體育迷”,已知5名“超級體育迷”中有2名女性,若從中任選2名,則至少有1名女性的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn),所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號(hào)為第一組,第二組,…,第五組,如圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為( )
A. 6 B. 8
C. 12 D. 18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題分)
已知函數(shù),若存在,使得,則稱是函數(shù)的一個(gè)不動(dòng)點(diǎn),設(shè)二次函數(shù).
(Ⅰ)當(dāng), 時(shí),求函數(shù)的不動(dòng)點(diǎn).
(Ⅱ)若對于任意實(shí)數(shù),函數(shù)恒有兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.
(Ⅲ)在()的條件下,若函數(shù)的圖象上, 兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且直線是線段的垂直平分線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分別是A1B,B1C1的中點(diǎn).
(1)求證:MN//平面ACC1A1;
(2)求點(diǎn)N到平面MBC的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com