12.若(2+x)(1-x)6=a0+a1x+a2x2+…+a7x7,則a2+a3=-1.

分析 根據(jù)題意只要先求出(1-x)6的通項,求解展開式中的含x2,x3項的系數(shù),即可求a2,a3,從而得解a2+a3的值.

解答 解:由于:(2+x)(1-x)6=a0+a1x+a2x2+…+a7x7
而:(1-x)6展開式的通項為:Tr+1=C${\;}_{6}^{r}$(-x)r,
所以:(2+x)(1-x)6展開式中含x2的項為:2C${\;}_{6}^{2}$(-x)2+x•C${\;}_{6}^{1}$(-x)=30x2-6x2=24x2,可得:a2=24,
(2+x)(1-x)6展開式中含x3的項為:2C${\;}_{6}^{3}$(-x)3+x•C${\;}_{6}^{2}$(-x)2=-40x3+15x3=-25x3,可得:a3=-25,
∴a2+a3=-1.
故答案為:-1.

點評 本題主要考查了二項展開式的通項在求解指定項中的應(yīng)用,解題的關(guān)鍵是尋求指定項得到的途徑,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=xlnx.
(Ⅰ)求函數(shù)f(x)在[m,m+2](m>0)上的最小值;
(Ⅱ)證明:對一切x∈(0,+∞),都有$f(x)>\frac{x}{e^x}-\frac{2}{e}$成立,其中e為自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=2ax3-3ax2+1,g(x)=-$\frac{a}{4}x+\frac{3}{2}$,若對任意給定的m∈[0,2],關(guān)于x的方程f(x)=g(m)在區(qū)間[0,2]上總存在兩個不同的解,則實數(shù)a的取值范圍是( 。
A.(-∞,-1)B.(1,+∞)C.(-∞,-1)∪(1,+∞)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.閱讀如圖的程序框圖,運行相應(yīng)的程序,則輸出的值為( 。
A.81B.27C.16D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.根據(jù)表格中的數(shù)據(jù)用最小二乘法計算出變量x、y的線性回歸方程為$\stackrel{∧}{y}$=3x-$\frac{3}{2}$,則表格中m的值是( 。
x0123
y-118m
A.4B.$\frac{9}{2}$C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}+1,x≤1}\\{{2^x}+ax,x>1}\end{array}}$,若f(f(1))=4a,則實數(shù)a=2,函數(shù)f(x)的單調(diào)增區(qū)間為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖所示的程序框圖的算法思路源于我國古代數(shù)學(xué)中的秦九韶算法,執(zhí)行該程序框圖,則輸出的結(jié)果S表示的值為( 。
A.a0+a1+a2+a3B.(a0+a1+a2+a3)x3
C.a0+a1x+a2x2+a3x3D.a0x3+a1x2+a2x+a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在平面直角坐標(biāo)系中,不等式組$\left\{\begin{array}{l}x+y-1≥0\\ x-1≤0\\ 3x-y+1≥0\end{array}\right.$所表示的平面區(qū)域的面積是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.下列命題:
①函數(shù)y=-$\frac{1}{x}$在其定義域上是增函數(shù);
②函數(shù)y=$\frac{x(x+1)}{x+1}$是奇函數(shù);
③函數(shù)y=log2(x-1)的圖象可由y=log2(x+1)的圖象向右平移2個單位得到;
④若($\frac{1}{2}$)a=($\frac{1}{3}$)b<1.則a<b<0
則下列正確命題的序號是③.

查看答案和解析>>

同步練習(xí)冊答案