已知平行四邊形ABCD中,AB=6,AD=10,BD=8,E是線段AD的中點(diǎn).沿BD將△BCD翻折到△BC'D,使得平面BC'D⊥平面ABD.
(Ⅰ)求直線BD與平面BEC'所成角的正弦值;
(Ⅱ)求二面角D-BE-C'的余弦值.

解:(Ⅰ)平行四邊形ABCD中,AB=6,AD=10,BD=8,
沿直線BD將△BCD翻折成△BC'D
可知CD=6,BC’=BC=10,BD=8,
即BC'2=C'D2+BD2,故CD⊥BD,C'D⊥BD.
∵平面BC'D⊥平面ABD,平面BC'D∩平面ABD=BD,C'D?平面BC'D,
∴C'D⊥平面ABD. …(4分)
如圖,以D為原點(diǎn),建立空間直角坐標(biāo)系D-xyz.
則D(0,0,0),A(8,6,0),B(8,0,0),C'(0,0,6).
∵E是線段AD的中點(diǎn),∴E(4,3,0),
在平面BEC'中,,
設(shè)平面BEC'法向量為,
,即,
令x=3,得y=4,z=4,故
設(shè)直線BD與平面BEC'所成角為θ,則
∴直線BD與平面BEC'所成角的正弦值為. …(9分)
(Ⅱ)由(Ⅰ)知平面BEC'的法向量為,而平面DBE的法向量為,
,
因?yàn)槎娼荄-BE-C'為銳角,
所以二面角D-BE-C'的余弦值為. …(12分)
分析:(Ⅰ)先證明C'D⊥平面ABD,以D為原點(diǎn),建立空間直角坐標(biāo)系D-xyz.推出點(diǎn)D、A、B、C'的坐標(biāo),求出,通過求出平面BEC'法向量為,利用求直線BD與平面BEC'所成角的正弦值;
(Ⅱ)利用(Ⅰ)平面BEC'法向量為,以及平面DBE的法向量,通過,求二面角D-BE-C'的余弦值.
點(diǎn)評:本題是中檔題,考查直線與平面所成的角的求法,二面角的求法,正確建立空間直角坐標(biāo)系求出平面的法向量是解題的關(guān)鍵,考查計(jì)算能力,空間想象能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個(gè)頂點(diǎn)為D,再以O(shè)C、OD為鄰邊作平行四邊形,它的第四個(gè)頂點(diǎn)為H.
(1)若
OA
=
a
,
OB
=
b
OC
=
c
,
OH
=
h
,試用
a
、
b
、
c
表示
h
;
(2)證明:
AH
BC
;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示|
h
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以Rt△ABC的直角邊AB為直徑作⊙O,與斜邊AC交于點(diǎn)D,E為BC邊上的中點(diǎn),連結(jié)DE.

(1)如圖,求證:DE是⊙O的切線;

(2)連結(jié)OE、AE,當(dāng)∠CAB為何值時(shí),四邊形AOED是平行四邊形,并在此條件下求sin∠CAE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個(gè)頂點(diǎn)為D,再以O(shè)C、OD為鄰邊作平行四邊形,它的第四個(gè)頂點(diǎn)為H.
(1)若
OA
=
a
OB
=
b
,
OC
=
c
OH
=
h
,試用
a
、
b
c
表示
h
;
(2)證明:
AH
BC
;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示|
h
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年遼寧省沈陽二中高一(下)期中數(shù)學(xué)試卷(必修4)(解析版) 題型:解答題

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個(gè)頂點(diǎn)為D,再以O(shè)C、OD為鄰邊作平行四邊形,它的第四個(gè)頂點(diǎn)為H.
(1)若,試用表示
(2)證明:;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省肇慶市南豐中學(xué)高三(上)數(shù)學(xué)復(fù)習(xí)試卷C (必修4)(解析版) 題型:解答題

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個(gè)頂點(diǎn)為D,再以O(shè)C、OD為鄰邊作平行四邊形,它的第四個(gè)頂點(diǎn)為H.
(1)若,試用表示;
(2)證明:;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示

查看答案和解析>>

同步練習(xí)冊答案