【題目】已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,直線的斜率為,且原點(diǎn)到直線的距離為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若不經(jīng)過點(diǎn)的直線與橢圓交于兩點(diǎn),且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請(qǐng)說明理由.

【答案】(1) (2) 的周長為定值.

【解析】

1)根據(jù)已知條件結(jié)合,即可求出標(biāo)準(zhǔn)方程;

2)直線與圓相切,圓心到直線的距離等于半徑,得出關(guān)系,直線與橢圓聯(lián)立,求出相交弦長,再用兩點(diǎn)間距離公式,求出長,求出 的周長,即可判定結(jié)論.

: (1)由題可知,則

直線的方程為,所以

聯(lián)立①②,解得,又

所以橢圓的標(biāo)準(zhǔn)方程式為.

(2)因?yàn)橹本與圓相切,

所以,即

設(shè),聯(lián)立

所以,

則由根與系數(shù)的關(guān)系可得

所以,

所以,

因?yàn)?/span>

同理,所以

所以的周長為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角AB,C的對(duì)邊分別為a,b,c,且sin2A+sin2B+sin2CsinAsinB+sinBsinC+sinCsin A

1)證明:△ABC是正三角形;

2)如圖,點(diǎn)D在邊BC的延長線上,且BC2CDAD,求sinBAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1),求的單調(diào)區(qū)間;

(2)存在三個(gè)極值點(diǎn),且,求的取值范圍,并證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為平面內(nèi)一定點(diǎn),動(dòng)點(diǎn)為平面內(nèi)曲線上的任意一點(diǎn),且滿足,過原點(diǎn)的直線交曲線兩點(diǎn).

1)證明:直線與直線的斜率之積為定值;

2)設(shè)直線,交直線兩點(diǎn),求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

3)若對(duì)于恒成立,的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,滿足…).

1)若,求的值;

2)若,則數(shù)列中第幾項(xiàng)最。空(qǐng)說明理由;

3)若n=1,2,3,…),求證:“數(shù)列為等差數(shù)列”的充分必要條件是“數(shù)列為等差數(shù)列且n=1,2,3,…)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,若底面是正三角形,側(cè)棱長、分別為棱的中點(diǎn),并且,則異面直線所成角為______;三棱錐的外接球的體積為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),若存在區(qū)間,使得,則稱函數(shù)可等域函數(shù),區(qū)間為函數(shù)的一個(gè)可等域區(qū)間.給出下列4個(gè)函數(shù):

;;

其中存在唯一可等域區(qū)間可等域函數(shù)為( )

(A)①②③ (B)②③ (C)①③ (D)②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,,且.

1的通項(xiàng)公式為__________

2)在、、項(xiàng)中,被除余的項(xiàng)數(shù)為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案