15.在一個(gè)盒子里盛有若干個(gè)均勻的紅球和白球,從中任取一個(gè)球,取到紅球的概率為$\frac{1}{3}$;若從中任取兩個(gè)球,取到的全是紅球的概率為$\frac{1}{11}$,則盒子里一共有紅球和白球( 。
A.6個(gè)B.9個(gè)C.12個(gè)D.24個(gè)

分析 設(shè)盒中有紅球m個(gè),白球n個(gè),利用已知條件結(jié)合等可能事件概率計(jì)算公式能求出盒子里一共有紅球和白球的個(gè)數(shù).

解答 解:設(shè)盒中有紅球m個(gè),白球n個(gè),
由題意得$\left\{\begin{array}{l}{\frac{m}{m+n}=\frac{1}{3}}\\{\frac{{C}_{m}^{2}}{{C}_{m+n}^{2}}=\frac{1}{11}}\end{array}\right.$,
整理,得$\left\{\begin{array}{l}{n=2m}\\{2{m}^{2}-8m=0}\end{array}\right.$,
解得m=4,n=8或n=m=0(舍),
∴盒子里一共有紅球和白球4+8=12個(gè).
故選:C.

點(diǎn)評(píng) 本題考查概率的求法及應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=2cos(2x+$\frac{π}{4}$),x∈R的單調(diào)遞減區(qū)間是( 。
A.[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈ZB.[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z
C.[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈ZD.[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖四邊形ABCD為梯形,AD∥BC,∠ABC=90°,AD=2,AB=4,BC=5,圖中陰影部分(梯形剪去一個(gè)扇形)繞AB旋轉(zhuǎn)一周形成一個(gè)旋轉(zhuǎn)體.
(1)求該旋轉(zhuǎn)體的表面積;
(2)求該旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若某程序框圖如圖所示,則輸出的n的值是(  )
 
A.43B.44C.45D.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=m(x-1)ex+$\frac{1}{2}$x2(m∈R),其導(dǎo)函數(shù)f′(x),若對(duì)任意的x<0,不等式x2+(m+1)x>f′(x)恒成立,則實(shí)數(shù)m的取值范圍為( 。
A.(0,1)B.(-∞,1)C.(-∞,1]D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若0<x<1,a=$\sqrt{\frac{sinx}{x}}$,b=$\frac{sinx}{x}$,c=$\frac{sin\sqrt{x}}{\sqrt{x}}$,則a,b,c的大小關(guān)系為a>b>c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓錐的全面積為12π,它的側(cè)面展開圖是一個(gè)圓心為120°的扇形,求圓錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知AB是圓x2+y2=1的一條直徑,點(diǎn)P在圓(x-4)2+(y-3)2=1上,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值為( 。
A.15B.17C.24D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若i是虛數(shù)單位,復(fù)數(shù)z=$\frac{i}{2+i}$的虛部為$\frac{2}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案