在四邊形ABCD中,AD∥BC,AC⊥BD,已知
AB
=6
i
+
j
BC
=x
i
+y
j
,
CD
=-2
i
-3
j
,(
i
j
這分別是x,y軸上方的單位向量),求x,y(x,y∈R)的值.
考點(diǎn):向量在幾何中的應(yīng)用
專題:計(jì)算題,平面向量及應(yīng)用
分析:由題意,利用坐標(biāo)表示向量
AB
=6
i
+
j
=(6,1),
BC
=x
i
+y
j
=(x,y),
CD
=-2
i
-3
j
=(-2,-3),從而表示出
AD
,
AC
,
BD
等向量,從而求值.
解答: 解:由題意得,
AB
=6
i
+
j
=(6,1),
BC
=x
i
+y
j
=(x,y),
CD
=-2
i
-3
j
=(-2,-3),
AD
=
i
AB
+
BC
+
CD
=(6+x-2,1+y-3)=(4+x,y-2);
AC
=
i
AB
+
BC
=(6+x,1+y);
BD
=
i
BC
+
CD
=(x-2,y-3);
故由AD∥BC,AC⊥BD可得,
(4+x)y-(y-2)x=0
(6+x)(x-2)+(1+y)(y-3)=0
,
解得,x=2,y=-1或x=-6,y=3.
點(diǎn)評(píng):本題考查了平面向量的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)點(diǎn)為圓x2+y2-2x=0的圓心,
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)拋物線C上兩個(gè)動(dòng)點(diǎn)A、B滿足|AF|+BF|=6線段AB的垂直平分線與x軸交于點(diǎn)M;
(1)求點(diǎn)M的坐標(biāo);
(2)當(dāng)線段AB最長時(shí),求△MAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
-1
3x
-1
(x<1)
b(x=1)
ax2+2(x>1)

(1)求
lim
x
 
0
f(x);
(2若
lim
x
 
1
f(x)存在,求a,b的值;
(3)若函數(shù)f(x)在x=1處連續(xù),求a,b所滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1和拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從它們每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
x5-
2
4
2
2
6
2
y2
5
0-4
3
2
-
1
2
(Ⅰ)求C1和C2的方程;
(Ⅱ)過點(diǎn)S(0,-
1
3
)且斜率為k的動(dòng)直線l交橢圓C1于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)D,使以線段AB為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出D的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某海島上有一座海拔1千米的山,山頂上有一觀察站P(P在海平面上的射影點(diǎn)為A),測得一游艇在海島南偏西30°,俯角為45°的B處,該游艇準(zhǔn)備前往海島正東方向,俯角為45°的旅游景點(diǎn)C處,如圖所示.
(Ⅰ)設(shè)游艇從B處直線航行到C處時(shí),距離觀察站P最近的點(diǎn)為D處.
(i)求證:BC⊥平面PAD;(ii)計(jì)算B、D兩點(diǎn)間的距離.
(Ⅱ)海水退潮后,在(Ⅰ)中的點(diǎn)D處周圍0.25千米內(nèi)有暗礁,航道變窄,為了有序參觀景點(diǎn),要求游艇從B處直線航行到A的正東方向某點(diǎn)E處后,再沿正東方向繼續(xù)駛向C處.為使游艇不會(huì)觸礁,試求AE的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把一根長度為5的鐵絲截成任意長的3段,則能構(gòu)成三角形的概率為(  )
A、
1
2
B、
3
4
C、
4
5
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

AC=BD,AB=CD,BC=AD,三個(gè)側(cè)面與底面所成二面角分別是α,β,γ.求證:cosα+cosβ+cosγ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

邊長為2的正三角形ABC中,D,E,M分別是AB,AC,BC的中點(diǎn),N為DE的中點(diǎn),將△ADE沿DE折起至A′DE位置,使A′M=
6
2
,設(shè)MC的中點(diǎn)為Q,A′B的中點(diǎn)為P,則
①A′N⊥平面BCED    
②NQ∥平面A′EC
③DE⊥平面A′MN
④平面PMN∥平面A′EC
以上結(jié)論正確的是( 。
A、①②④B、②③④
C、①②③D、①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(普通文科做)已知f(x)=x+
4
x
,則f(x)的單調(diào)遞增區(qū)間為( 。
A、(-∞,-2]
B、[2,+∞)
C、(-∞,-2]與[2,+∞)
D、(-∞,-2]∪[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案