【題目】在四棱錐中,底面是矩形,平面,,,以的中點(diǎn)為球心、為直徑的球面交于點(diǎn),交于點(diǎn).
(1)求證:平面;
(2)求直線(xiàn)與平面所成的角的大;
(3)求點(diǎn)到平面的距離.
【答案】(1)證明見(jiàn)解析;(2);(3).
【解析】
(1)由題設(shè)得知,再證明平面,可得出,然后利用直線(xiàn)與平面垂直的判定定理可得出平面;
(2)先利用等體積法計(jì)算出點(diǎn)到平面的距離,然后利用作為直線(xiàn)與平面所成的角的正弦值,即可得出直線(xiàn)與平面所成的角的大;
(3)先根據(jù)條件分析出所求距離為點(diǎn)到平面距離的,可得出點(diǎn)到平面的距離為,再利用第二問(wèn)的結(jié)論即可得出答案.
(1)以為直徑的球面交于點(diǎn),則,
平面,平面,,
四邊形為矩形,.
,平面,平面,.
,平面;
(2)由(1)知,平面,平面,,
又,則為的中點(diǎn),且,.
的面積為.
的面積為,
為的中點(diǎn),所以,,
設(shè)點(diǎn)到平面的距離為,由,得,
.
設(shè)直線(xiàn)與平面所成角的大小為,則.
因此,直線(xiàn)與平面所成角的大小為;
(3)平面,平面,,
,,
,且,則,
得,,
故點(diǎn)到平面的距離是點(diǎn)到平面的距離的.
又是的中點(diǎn),則、到平面的距離相等,
由(2)可知所求距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線(xiàn).
(1)證明:不論取什么實(shí)數(shù),直線(xiàn)與圓恒交于兩點(diǎn);
(2)若直線(xiàn)與圓相交于,求時(shí)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)方體中,,E是的中點(diǎn),,設(shè)過(guò)點(diǎn)E、F、K的平面與平面ABCD的交線(xiàn)為,則直線(xiàn)與直線(xiàn)所成角的正切值為
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦點(diǎn)和上頂點(diǎn)分別為,定義:為橢圓的“特征三角形”,如果兩個(gè)橢圓的特征三角形是相似三角形,那么稱(chēng)這兩個(gè)橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比,已知點(diǎn)是橢圓的一個(gè)焦點(diǎn),且上任意一點(diǎn)到它的兩焦點(diǎn)的距離之和為4
(1)若橢圓與橢圓相似,且與的相似比為2:1,求橢圓的方程.
(2)已知點(diǎn)是橢圓上的任意一點(diǎn),若點(diǎn)是直線(xiàn)與拋物線(xiàn)異于原點(diǎn)的交點(diǎn),證明:點(diǎn)一定在雙曲線(xiàn)上.
(3)已知直線(xiàn),與橢圓相似且短半軸長(zhǎng)為的橢圓為,是否存在正方形,(設(shè)其面積為),使得在直線(xiàn)上,在曲線(xiàn)上?若存在,求出函數(shù)的解析式及定義域;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(1)求的單調(diào)區(qū)間;
(2)是否存在正實(shí)數(shù)使得,若存在求出,否則說(shuō)明理由;
(3)若存在不等實(shí)數(shù),,使得,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1) 證明:PB∥平面AEC
(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小威初三參加某高中學(xué)校的數(shù)學(xué)自主招生考試,這次考試由十道選擇題組成,得分要求是:做對(duì)一道題得1分,做錯(cuò)一道題扣去1分,不做得0分,總得分7分就算及格,小威的目標(biāo)是至少得7分獲得及格,在這次考試中,小威確定他做的前六題全對(duì),記6分,而他做余下的四道題中,每道題做對(duì)的概率均為p,考試中,小威思量:從余下的四道題中再做一題并且及格的概率;從余下的四道題中恰做兩道并且及格的概率,他發(fā)現(xiàn),只做一道更容易及格.
(1)設(shè)小威從余下的四道題中恰做三道并且及格的概率為,從余下的四道題中全做并且及格的概率為,求及;
(2)由于p的大小影響,請(qǐng)你幫小威討論:小威從余下的四道題中恰做幾道并且及格的概率最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,橢圓的方程為,左右焦點(diǎn)分別為,,為短軸的一個(gè)端點(diǎn),且的面積為.設(shè)過(guò)原點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),為橢圓上異于的一點(diǎn),且直線(xiàn),的斜率都存在,.
(1)求的值;
(2)設(shè)為橢圓上位于軸上方的一點(diǎn),且軸,、為曲線(xiàn)上不同于的兩點(diǎn),且,設(shè)直線(xiàn)與軸交于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,.
(1)當(dāng)時(shí),求函數(shù)圖象在處的切線(xiàn)方程;
(2)若對(duì)任意,不等式恒成立,求的取值范圍;
(3)若存在極大值和極小值,且極大值小于極小值,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com