【題目】某工廠第一季度某產(chǎn)品月生產(chǎn)量依次為10萬(wàn)件,12萬(wàn)件,13萬(wàn)件,為了預(yù)測(cè)以后每個(gè)月的產(chǎn)量,以這3個(gè)月的產(chǎn)量為依據(jù),用一個(gè)函數(shù)模擬該產(chǎn)品的月產(chǎn)量(單位:萬(wàn)件)與月份的關(guān)系. 模擬函數(shù);模擬函數(shù).
(1)已知4月份的產(chǎn)量為萬(wàn)件,問(wèn)選用哪個(gè)函數(shù)作為模擬函數(shù)好?
(2)受工廠設(shè)備的影響,全年的每月產(chǎn)量都不超過(guò)15萬(wàn)件,請(qǐng)選用合適的模擬函數(shù)預(yù)測(cè)6月份的產(chǎn)量.
【答案】(1);(2).
【解析】
試題分析:(1)借助題設(shè)條件運(yùn)用已知建立方程組分析探求;(2)借助題設(shè)運(yùn)用函數(shù)的思想分析探求.
試題解析:
(1)若用模擬函數(shù)1:,則有
,解得,.................3分
即,當(dāng)時(shí),..............5分
若用模擬函數(shù)2:,則有
,解得,.................8分
即,當(dāng)時(shí),....................10分
所以選用模擬函數(shù)1好...................11分
(2)因?yàn)槟M函數(shù)1:是單調(diào)增的函數(shù),所以當(dāng)時(shí),生產(chǎn)量遠(yuǎn)大于他的最高限量,.........13分
模擬函數(shù)2:,也是單調(diào)增,但生產(chǎn)量,所以不會(huì)超過(guò)15萬(wàn)件,所以應(yīng)該選用模擬函數(shù)2:好...........15分
當(dāng)時(shí),,
所以預(yù)測(cè)6月份的產(chǎn)量為萬(wàn)件...................16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)關(guān)于數(shù)列命題:
(1)若是等差數(shù)列,則三點(diǎn)、、共線;
(2)若是等比數(shù)列,則、、 ()也是等比數(shù)列;
(3)等比數(shù)列的前n項(xiàng)和為,若對(duì)任意的,點(diǎn)均在函數(shù) (, 均為常數(shù))的圖象上,則r的值為.
(4)對(duì)于數(shù)列,定義數(shù)列為數(shù)列的“差數(shù)列”,若, 的“差數(shù)列”的通項(xiàng)為,則數(shù)列的前項(xiàng)和
其中正確命題的個(gè)數(shù)是 ( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 平面, , , , 為的中點(diǎn).
(Ⅰ)證明: 平面;
(Ⅱ)求多面體的體積;
(Ⅲ)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)),若以直角坐標(biāo)系的點(diǎn)為極點(diǎn),方向為極軸,選擇相同的長(zhǎng)度單位建立極坐標(biāo)系,得曲線的極坐標(biāo)方程為.
(1)求直線的傾斜角和曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點(diǎn),設(shè)點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若在上的最大值是,求的值;
(3)記,當(dāng)時(shí),若對(duì)任意,總有成立,試求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列為等比數(shù)列,等差數(shù)列的前項(xiàng)和為,且滿足:
.
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè),求;
(3)設(shè),問(wèn)是否存在正整數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】漳州市博物館為了保護(hù)一件珍貴文物,需要在館內(nèi)一種透明又密封的長(zhǎng)方體玻璃保護(hù)罩內(nèi)充入保護(hù)液體.該博物館需要支付的總費(fèi)用由兩部分組成:①罩內(nèi)該種液體的體積比保護(hù)罩的容積少0.5立方米,且每立方米液體費(fèi)用500元;②需支付一定的保險(xiǎn)費(fèi)用,且支付的保險(xiǎn)費(fèi)用與保護(hù)罩容積成反比,當(dāng)容積為2立方米時(shí),支付的保險(xiǎn)費(fèi)用為4000元.
(Ⅰ)求該博物館支付總費(fèi)用與保護(hù)罩容積之間的函數(shù)關(guān)系式;
(Ⅱ)求該博物館支付總費(fèi)用的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且滿足.
(1)求證:數(shù)列為等比數(shù)列;
(2)若,求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).
(1)求的解析式及單調(diào)遞減區(qū)間;
(2)若存在,使函數(shù)成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com