若函數(shù)數(shù)學(xué)公式有且只有一個(gè)零點(diǎn),則實(shí)數(shù)a=________.


分析:函數(shù)有且只有一個(gè)零點(diǎn),等價(jià)于方程有且只有一個(gè)根,即方程2x2+2ax+a2-1=0有且只有一個(gè)根,利用判別式可解.
解答:函數(shù)有且只有一個(gè)零點(diǎn),等價(jià)于方程有且只有一個(gè)根
即方程(x+a)2=1-x2有且只有一個(gè)根
即方程2x2+2ax+a2-1=0有且只有一個(gè)根
∴△=4a2-8(a2-1)=0
∴a2=2
∴a=
故答案為:
點(diǎn)評(píng):本題考查函數(shù)的零點(diǎn),考查方程的根,解題的關(guān)鍵是將函數(shù)有且只有一個(gè)零點(diǎn),轉(zhuǎn)換為方程有且只有一個(gè)根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時(shí)滿足:①不等式f(x)≤0的解集有且只有一個(gè)元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n).
(1)求函數(shù)f(x)的表達(dá)式;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)在各項(xiàng)均不為零的數(shù)列{cn}中,若ci•ci+1<0,則稱ci,ci+1為這個(gè)數(shù)列{cn}一對(duì)變號(hào)項(xiàng).令cn=1-
aan
(n為正整數(shù)),求數(shù)列{cn}的變號(hào)項(xiàng)的對(duì)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•昌平區(qū)二模)已知函數(shù)f(x)=x2-ax+a(x∈R),在定義域內(nèi)有且只有一個(gè)零點(diǎn),存在0<x1<x2,使得不等式f(x1)>f(x2)成立.若n∈N*,f(n)是數(shù)列{an}的前n項(xiàng)和.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)設(shè)各項(xiàng)均不為零的數(shù)列{cn}中,所有滿足ck•ck+1<0的正整數(shù)k的個(gè)數(shù)稱為這個(gè)數(shù)列{cn}的變號(hào)數(shù),令cn=1-
4
an
(n為正整數(shù)),求數(shù)列{cn}的變號(hào)數(shù);
(Ⅲ)設(shè)Tn=
1
an+6
(n≥2且n∈N*),使不等式
7
m
30
≤(1+T2)•(1+T3)…(1+Tn)•
1
2n+3
恒成立,求正整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時(shí)滿足:①不等式f(x)≤0的解集有且只有一個(gè)元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=n-k(n∈N*,k∈R)滿足:對(duì)任意的正整數(shù)n都有bn<an,求k的取值范圍
(3)設(shè)各項(xiàng)均不為零的數(shù)列{cn}中,所有滿足ci•ci+1<0的正整數(shù)i的個(gè)數(shù)稱為這個(gè)數(shù)列{cn}的變號(hào)數(shù).令cn=1-
aan
(n為正整數(shù)),求數(shù)列{cn}的變號(hào)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在區(qū)間(0,+∞)上的函數(shù)f (x)滿足:(1)f(x)不恒為零;(2)對(duì)任意a∈R+,b∈R,都有f(ab)=bf(a).
(Ⅰ)求f(1)的值;
(Ⅱ)求證方程f(x)=0有且只有一個(gè)實(shí)數(shù)根;
(Ⅲ)若f(2)>0,試證f(x)是(0,+∞)上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•韶關(guān)一模)已知函數(shù)f(x)=ax3+bx2+(b-a)x(a,b是不同時(shí)為零的常數(shù)),其導(dǎo)函數(shù)為f′(x).
(1)當(dāng)a=
1
3
時(shí),若不等式f′(x)>-
1
3
對(duì)任意x∈R恒成立,求b的取值范圍;
(2)求證:函數(shù)y=f′(x)在(-1,0)內(nèi)至少存在一個(gè)零點(diǎn);
(3)若函數(shù)f(x)為奇函數(shù),且在x=1處的切線垂直于直線x+2y-3=0,關(guān)于x的方程f(x)=-
1
4
t在[-1,t](t>-1)上有且只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案