【題目】在平面直角坐標系中, 為坐標原點, 、是雙曲線上的兩個動點,動點滿足,直線與直線斜率之積為2,已知平面內存在兩定點、,使得為定值,則該定值為________
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線,以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線.
(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的倍、2倍后得到曲線.試寫出直線的直角坐標方程和曲線的參數方程;
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,以坐標原點為極點, 軸正半軸為極軸,建立極坐標系,點的極坐標為,直線的極坐標方程為,且過點,曲線的參考方程為(為參數).
(1)求曲線上的點到直線的距離的最大值與最小值;
(2)過點與直線平行的直線與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線的參數方程為(為參數),在以原點為極點, 軸正半軸為極軸的極坐標系中,圓的方程為.
(1)寫出直線的普通方程和圓的直角坐標方程;
(2)設點,直線與圓相交于兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是邊長為的正方形,平面,,,與平面所成角為.
(Ⅰ)求證:平面.
(Ⅱ)求二面角的余弦值.
(Ⅲ)設點是線段上一個動點,試確定點的位置,使得平面,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線的焦點為,準線為,點在拋物線上,已知以點為圓心, 為半徑的圓交于兩點.
(Ⅰ)若, 的面積為4,求拋物線的方程;
(Ⅱ)若三點在同一條直線上,直線與平行,且與拋物線只有一個公共點,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com