如圖,已知幾何體ABC-DEF中,△ABC及△DEF都是邊長(zhǎng)為2的等邊三角形,四邊形ABEF為矩形,且CD=AF+2,CD//AF,O為AB中點(diǎn).
(1)求證:AB⊥平面DCO
(2)若M為CD中點(diǎn),AF=x,則當(dāng)x取何值時(shí),使AM與平面ABEF所成角為45°?
試求相應(yīng)的x值的.
(3)求該幾何體在(2)的條件下的體積.
解:(1)因?yàn)椤鰽BC為等邊三角形,O為AB中點(diǎn),故AB⊥CO,
又CD//AF,在矩形ABEF中AB⊥AF,所以AB⊥CD,
由CD∩CO=C,證得AB⊥平面DCO
(2)設(shè)I為EF中點(diǎn),連接OI,依題意,四邊形
OIDC為等腰梯形;
在梯形OIDC中過O作OH⊥CD垂足為H,過M作
MG//OG,則MG⊥OI,由(1)可知:面OIDC⊥面ABEF
因?yàn)镺IDC∩面ABEF=OI,所以MG⊥面ABEF,
連接AC,則∠MAG等于直線AM與平面ABEF所成角
因?yàn)樵谡切蜛BC中,AO=1,CO=,在等腰梯形OIDC中CH=1,OG=0.5x;
所以在直角三角形OCH中,OH=,即MG=;
在直角三角形AOG z中,AG=
由tan∠MAG=
(3)連接AH、BH,由(1)(2)可知,
該幾何體的體積等于兩個(gè)以三角形ABH為底面,
CH為高的三棱錐的體積與一個(gè)以三角形ABH為底面,AF為高的三棱柱的體積之和.
解二:建坐標(biāo)系(略)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年長(zhǎng)沙一中一模理)如圖,已知幾何體中,及都是邊長(zhǎng)為2的等邊三角形,四邊形為矩形,且,,O為AB中點(diǎn).
(1)求證:平面;
(2)若M為CD中點(diǎn),,則當(dāng)取何值時(shí),使AM與平面ABEF所成角為?試求相應(yīng)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com