5.解三角形方程
(1)$2sin({x+\frac{π}{6}})=1$
(2)$tan({2x-\frac{π}{4}})=1$
(3)sin2x=sinx.

分析 (1)利用三角方程,求解即可.
(2)利用正切函數(shù)值轉(zhuǎn)化即可.
(3)利用正弦函數(shù)的三角方程求解即可.

解答 解:(1)$2sin({x+\frac{π}{6}})=1$,可得sin(x+$\frac{π}{6}$)=$\frac{1}{2}$,
所以x+$\frac{π}{6}$=kπ+$({-1)}^{k}•\frac{π}{6}$,k∈Z.
$x∈\left\{{x\left|{x=kπ+{{({-1})}^k}•\frac{π}{6}-\frac{π}{6},k∈Z}\right.}\right\}$
(2)$tan({2x-\frac{π}{4}})=1$,可得2x-$\frac{π}{4}$=k$π+\frac{π}{4}$,k∈Z,
所以$x∈\left\{{x\left|{x=\frac{k}{2}π+\frac{π}{4},k∈Z}\right.}\right\}$
(3)sin2x=sinx.
可得2x=x+2kπ,或2x=2kπ+π-x,k∈Z,
$x∈\left\{{x\left|{x=2kπ或x=\frac{2}{3}kπ+\frac{π}{3},k∈Z}\right.}\right\}$

點評 本題考查三角方程的解法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.?dāng)?shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N*
(1)證明:數(shù)列$\left\{{\frac{a_n}{n}}\right\}$是等差數(shù)列;
(2)若$b{\;}_n=\frac{1}{a_n}$,數(shù)列{bn}的前n項和為Tn,求證:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=x+sinπx,則$f(\frac{1}{2017})+f(\frac{2}{2017})+f(\frac{3}{2017})+…+f(\frac{4033}{2017})$=(  )
A.4033B.-4033C.4034D.-4034

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若實數(shù)a,b,c,d滿足(b-lna)2+(c-d+2)2=0,則(a-c)2+(b-d)2的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某射擊俱樂部將要舉行移動靶射擊比賽,比賽規(guī)則是每位選手可以選擇在A 區(qū)射擊3次或選擇在B區(qū)射擊2次,在A區(qū)每射中一次得3分,射不中得0分;在B區(qū)每射中一次得2分,射不中得0分.已知參賽選手甲在A區(qū)和B區(qū)每次射中移動靶的概率分別為$\frac{1}{3}$和p(0<p<1).
(1)若選手甲在A區(qū)射擊,求選手甲至少得3分的概率
(2)我們把在A,B兩區(qū)射擊得分的數(shù)學(xué)期望較高者作為選擇射擊區(qū)的標(biāo)準(zhǔn),如果選手甲最終選擇了在B區(qū)射擊,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.學(xué)校決定把12個參觀航天航空博物館的名額給二(1)、二(2)、二(3)、二(4)四個班級.要求每個班分得的名額不比班級序號少;即二(1)班至少1個名額,二(2)班至少2個名額,…,則分配方案有( 。
A.10種B.6種C.165種D.495種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow a=(-1,1)$,$\overrightarrow b=(3,m)$,$\overrightarrow a∥(\overrightarrow a+\overrightarrow b)$,則m=( 。
A.2B.-2C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某企業(yè)為了更好地了解設(shè)備改造前后與生產(chǎn)合格品的關(guān)系,隨機抽取了180件產(chǎn)品進行分析,其中設(shè)備改造前的合格品有36件,不合格品有49件,設(shè)備改造后生產(chǎn)的合格品有65件,不合格品有30件.根據(jù)所給數(shù)據(jù):
(1)寫出2×2列聯(lián)表;  (2)判斷產(chǎn)品是否合格與設(shè)備改造是否有關(guān),說明理由.
 P(K2≥k) 0.0500.010 0.001 
 k 3.841 6.635 10.828
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,
數(shù)據(jù)支持:(65×49-36×30)2=4431025   101×79×85×95=64430825.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關(guān)系,下表記錄了小李某月1號到5號每天打籃球時間x(單位:小時)與當(dāng)天投籃命中率y之間的關(guān)系:
時間x12345
命中率y0.40.50.60.60.4
小李這5天的平均投籃命中率;用線性回歸分析的方法,預(yù)測小李該月6號打6小時籃球的投籃命中率.
附:線性回歸方程$\widehaty=\widehatbx+\widehata$中系數(shù)計算公式$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)}({y_i}-\overline y)}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

同步練習(xí)冊答案