9.“sinα=cosα”是“$α=\frac{π}{4}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 根據(jù)充分必要條件的定義以及三角函數(shù)的性質(zhì)判斷即可.

解答 解:由“$α=\frac{π}{4}$”能推出“sinα=cosα”,是必要條件,
反之,不成立,
故sinα=cosα”是“$α=\frac{π}{4}$”的必要不充分條件,
故選:B.

點(diǎn)評(píng) 本題考查了充分必要條件,考查三角函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列各組函數(shù)中,表示同一函數(shù)的一組是( 。
A.f(x)=$\frac{1}{x-1}$,g(x)=$\frac{x+1}{{x}^{2}-1}$B.f(x)=|x+1|,g(x)=$\sqrt{{x}^{2}+2x+1}$
C.f(x)=x0,g(x)=1D.f(x)=3x+2(x≥0),g(x)=2+3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了解今年某校高三畢業(yè)班想?yún)④姷膶W(xué)生體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖).已知圖中從左到右的前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為24.
(Ⅰ)求該校高三畢業(yè)班想?yún)④姷膶W(xué)生人數(shù);
(Ⅱ)以這所學(xué)校的樣本數(shù)據(jù)來估計(jì)全省的總體數(shù)據(jù),若從全省高三畢業(yè)班想?yún)④姷耐瑢W(xué)中(人數(shù)很多)任選三人,設(shè)X表示體重超過60公斤的學(xué)生人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.不等式kx2-kx+1>0對一切實(shí)數(shù)x均成立,則k的取值范圍是( 。
A.0<k<4B.0≤k<4C.0<k≤4D.0≤k≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知圓C:(x-3)2+(y-4)2=1和兩點(diǎn)A(-m,0),B(m,0)(m>0),若Rt△PAB的直角頂點(diǎn)P在圓C上,則實(shí)數(shù)m的最大值等于6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在正方體ABCD-A1B1C1D1中,設(shè)E是棱CC1的中點(diǎn).
(1)求證:BD⊥AE
(2)求證:AC∥平面B1DE;
(3)求銳二面角E-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在空間直角坐標(biāo)系中,點(diǎn)A(1,0,1)與點(diǎn)B(2,1,-1)間的距離為( 。
A.$\sqrt{3}$B.3C.$\sqrt{6}$D.$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知A(3,0),B(0,4),△AOB繞y軸旋轉(zhuǎn)一周得到的幾何體的表面積和體積分別是( 。
A.9π,12πB.12π,9πC.24π,12πD.15π,36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某工廠要建造一個(gè)長方體無蓋貯水池,其容積為6400m3,深為4m,如果池底每1m2的造價(jià)為300元,池壁每1m2的造價(jià)為240元,問怎樣設(shè)計(jì)水池能使總造價(jià)最低,最低總造價(jià)是多少元?

查看答案和解析>>

同步練習(xí)冊答案