11.在△ABC中,三內(nèi)角A,B,C所對的邊分別為a,b,c,設(shè)向量$\overrightarrow{p}$=(b+a,c),向量$\overrightarrow{q}$=(b-c,b-a),且$\overrightarrow{p}$∥$\overrightarrow{q}$.
(Ⅰ)求A的大。
(Ⅱ)若sinB•sinC=$\frac{3}{4}$,判定△ABC的形狀.

分析 (Ⅰ)根據(jù)向量共線的等價條件,建立方程關(guān)系,結(jié)合余弦定理進(jìn)行求解即可.
(Ⅱ)根據(jù)兩角和差的余弦公式進(jìn)行化簡即可.

解答 解:(Ⅰ)∵向量$\overrightarrow{p}$=(b+a,c),向量$\overrightarrow{q}$=(b-c,b-a),且$\overrightarrow{p}$∥$\overrightarrow{q}$.
∴(b+a)(b-a)-c(b-c)=0.
即b2-a2-bc+c2=0,
b2+c2-a2=bc,
則cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
則A=$\frac{π}{3}$;
(Ⅱ)若sinB•sinC=$\frac{3}{4}$,
cosA=-cos(B+C)=-cosBcosC+sinBsinC,
即$\frac{1}{2}$=$\frac{3}{4}$-cosBcosC,
則cosBcosC=$\frac{1}{4}$,
則cosB>0,cosC>0,
即B,C是銳角,
則△ABC的形狀為銳角三角形.

點(diǎn)評 本題主要考查解三角形的應(yīng)用,利用向量共線的等價條件,結(jié)合余弦定理以及兩角和差的余弦公式是解決本題的關(guān)鍵,考查學(xué)生的運(yùn)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.將一枚硬幣連續(xù)拋擲5次,求正面向上的次數(shù)X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若有5本小說,6本雜志,從這幾本書中任取三本,其中必須包括小說和雜志,則不同的取法種數(shù)有135種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.解下列對數(shù)方程.
(1)log2x-1(5x2+3x-17)=2;
(2)logx4+log2x=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.一臺機(jī)器在一天內(nèi)發(fā)生故障的概率為0.1,若這臺機(jī)器一周5個工作日不發(fā)生故障,可獲利5萬元;發(fā)生1次故障仍可獲利2.5萬元;發(fā)生2次故障的利潤為0元;發(fā)生3次或3次以上故障要虧損1萬元,這臺機(jī)器一周內(nèi)可能獲利的均值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.${∫}_{-1}^{1}$($\sqrt{16-(x+3)^{2}}$+$\frac{{e}^{x}-1}{{e}^{x}+1}$-x2)dx=$\frac{8π}{3}-2\sqrt{3}-\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)g(x)=x2-2x+m,f(x)是定義在[-2,2]上的奇函數(shù),且當(dāng)x∈(0,2]時,f(x)=2x-1,若對于任意x1∈[-2,2],使得g(x2)=f(x1),則實(shí)數(shù)m的取值范圍是( 。
A.[-5,-2]B.(-5,-2)C.(2,5)D.[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.三個圖中,左面的是一個長方體截去一個角所得多面體的直觀圖,右面是它的主視圖和左視圖(單位:cm).

(1)畫出該多面體的俯視圖;
(2)按照給出的尺寸,求該多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知兩個球的表面積之比為1:4,則這兩個球的半徑之比為( 。
A.1:4B.1:2C.1:16D.1:64

查看答案和解析>>

同步練習(xí)冊答案