精英家教網 > 高中數學 > 題目詳情

如圖,在直四棱柱中,底面為平行四邊形,且,,的中點.

(1) 證明:∥平面;

(2)求直線與平面所成角的正弦值.

 

【答案】

(1)利用線線平行證明線面平行;(2)

【解析】

試題分析:(1) 證明:連接,

因為,,所以,

因為,所以∥面.

(2)作,分別令

軸,軸,軸,建立坐標系如圖

因為,,所以、

所以,,,

設面的法向量為,所以,

化簡得,令,則.

,則

設直線與面所成角為,則

所以,則直線與面所成角的正弦值為 .

考點:本題考查了空間中的線面關系及角的求法

點評:(1)線面關系的證明主要是應用線面平行與垂直的判定定理或性質,具體問題中要是能夠根據題意適當做輔助線;(2)空間中角的計算,總是通過一定的手段將其轉化為一個平面內的角,并把它置于一個平面圖形,而且是一個三角形的內角來解決,而這種轉化就是利用直線與平面的平行與垂直來實現的

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,在直四棱柱中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2, AA=2,  E、E、F分別是棱AD、AA、AB的中點。               

(Ⅰ)證明:直線∥平面;w.w.w.k.s.5.u.c.o.m           

(Ⅱ)求二面角的余弦值

查看答案和解析>>

科目:高中數學 來源:2012-2013學年山西省高三第八次模擬文科數學試卷(解析版) 題型:解答題

如圖,在直四棱柱中,已知

(Ⅰ)求證:;

(Ⅱ)設上一點,試確定的位置,使平面,并說明理由.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省青島市高三統(tǒng)一質量檢測理科數學試卷 題型:解答題

如圖,在直四棱柱中,底面為平行四邊形,且

,,,的中點.

(Ⅰ) 證明:∥平面;

(Ⅱ)求直線與平面所成角的正弦值.

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江西省高三第四次月考數學文卷 題型:填空題

如圖,在直四棱柱中,底面ABCD為等腰梯形,AB//CD,AB=4, BC=CD=2,  =2,  E、分別是棱AD、A的中點.   

(1)      設F是棱AB的中點,證明:直線E//平面FC

(2)      證明:平面D1AC⊥平面BB1C1C.

 

 

查看答案和解析>>

科目:高中數學 來源:2013屆度江蘇省江陰市高二第一學期期中數學試卷 題型:解答題

如圖,在直四棱柱中,已知

(1)求證:;

(2)設上一點,試確定的位置,使平面,并證明.

 

 

 

查看答案和解析>>

同步練習冊答案