已知集合A={x|(
12
)
x2-x-6
<1},B={x|log4(x+a)<1}
,若A∩B=∅,求實數(shù)a的取值范圍.
分析:先利用指、對數(shù)不等式的解法分別求出集合A和集合B,再由A∩B=∅,求實數(shù)a的取值范圍.
解答:解:集合A={x|(
1
2
)
x2-x-6
<1}
={x|x2-x-6>0}={x|x>3或x<-2},
B={x|log4(x+a)<1}={x|0<x+a<4}={x|-a<x<4-a},
∵A∩B=∅,
-a≥-2
4-a≤3

解得1≤a≤2.
故實數(shù)a的取值范圍為:[1,2].
點評:本題考查指、對數(shù)不等式的解法、集合的運算,解題時要認真審題,先分別求出集合A和集合B,再由A∩B=∅,求實數(shù)a的取值范圍.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,則實數(shù)a的值范圍是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案