已知橢圓的對(duì)稱中心為坐標(biāo)原點(diǎn),上焦點(diǎn)為,離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為軸上的動(dòng)點(diǎn),過點(diǎn)作直線與直線垂直,試探究直線與橢圓的位置關(guān)系.
(Ⅰ);(Ⅱ)詳見解析.
【解析】
試題分析:(Ⅰ)先根據(jù)題中的已知條件以及、、三者之間的關(guān)系求出、、的值,從而確定橢圓的方程;(Ⅱ)先根據(jù)直線與直線垂直這一條件確定直線的方程(用點(diǎn)的橫坐標(biāo)表示),然后將直線的方程聯(lián)立轉(zhuǎn)化成關(guān)于或的一元二次方程,對(duì),,三種情況進(jìn)行分類討論,并確定相應(yīng)的的取值范圍.
試題解析:(Ⅰ)由條件可知,,, 3分
所以橢圓的標(biāo)準(zhǔn)方程為. 4分
(Ⅱ),, 6分
則直線:. 7分
聯(lián)立與
有, 9分
則
, 10分
,,
則當(dāng)時(shí),,此時(shí)直線與橢圓相交; 11分
當(dāng)時(shí),,此時(shí)直線與橢圓相切; 12分
當(dāng)時(shí),,此時(shí)直線與橢圓相離. 13分
考點(diǎn):橢圓的方程、直線與橢圓的位置關(guān)系
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(12分)已知橢圓的離心率為,橢圓的中心關(guān)于直線的對(duì)稱點(diǎn)落在直線上
(1)求橢圓C的方程;
(2)設(shè)是橢圓上關(guān)于軸對(duì)稱的任意兩點(diǎn),連接交橢圓于另一點(diǎn),求直線的斜率范圍并證明直線與軸相交頂點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年內(nèi)蒙古高三5月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的對(duì)稱中心為原點(diǎn),焦點(diǎn)在軸上,左、右焦點(diǎn)分別為,且,點(diǎn)在該橢圓上.
(1)求橢圓的方程;
(2)過點(diǎn)的直線與橢圓相交于兩點(diǎn),若的面積為,求以為圓心且與直線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年河北省冀州中學(xué)高二下學(xué)期期中考試數(shù)學(xué)(理) 題型:解答題
已知橢圓的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在軸上,離心率為,且點(diǎn)(1,)在該橢圓上.
(I)求橢圓的方程;
(II)過橢圓的左焦點(diǎn)的直線與橢圓相交于兩點(diǎn),若的面積為,求圓心在原點(diǎn)O且與直線相切的圓的方程. 高☆考♂資♀源?網(wǎng)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com