拋物線的頂點(diǎn)是雙曲線16x2-9y2=144的中心,而焦點(diǎn)是雙曲線的左頂點(diǎn),求拋物線的方程.
拋物線方程為y2=-12x.
雙曲線方程化為-=1.
其中心為(0,0),左頂點(diǎn)為F(-3,0).
設(shè)拋物線方程為y2=-2px(p>0),則=3.
∴p=6.∴所求拋物線方程為y2=-12x.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)拋物線的焦點(diǎn)作直線,與拋物線分別交于兩點(diǎn),
求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)拋物線L:的焦點(diǎn)F的直線l交此拋物線于A、B兩點(diǎn),
①求
②記坐標(biāo)原點(diǎn)為O,求△OAB的重心G的軌跡方程.
③點(diǎn)為拋物線L上一定點(diǎn),M、N為拋物線上兩個(gè)動(dòng)點(diǎn),且滿足,當(dāng)點(diǎn)M、N在拋物線上運(yùn)動(dòng)時(shí),證明直線MN過(guò)定點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)拋物線y2=2px(p>0)上一定點(diǎn)P(x0,y0)(y0>0)作兩條直線分別交拋物線于A(x1,y1)、B(x2,y2).
(1)求該拋物線上縱坐標(biāo)為的點(diǎn)到其焦點(diǎn)F的距離;
(2)當(dāng)PA與PB的斜率存在且傾斜角互補(bǔ)時(shí),求的值,并證明直線AB的斜率是非零常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的準(zhǔn)線方程是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,拋物線y2=4x的頂點(diǎn)為O,點(diǎn)A的坐標(biāo)為(5,0),傾斜角為的直線l與線段OA相交(不經(jīng)過(guò)點(diǎn)O或點(diǎn)A)且交拋物線于M、N兩點(diǎn),求△AMN面積最大時(shí)直線l的方程,并求△AMN的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

動(dòng)點(diǎn)P到直線x+4=0的距離減去它到點(diǎn)M(2,0)的距離之差等于2,則點(diǎn)P的軌跡是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若過(guò)點(diǎn)P(8,1)的直線與雙曲線x2-4y2=4相交于A、B兩點(diǎn),且P是線段AB的中點(diǎn),則直線AB的方程是_________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線y2=2px(p>0)上一點(diǎn)M到焦點(diǎn)的距離是a(a>),則點(diǎn)M的橫坐標(biāo)是(    )
A.a(chǎn)+B.a(chǎn)-C.a(chǎn)+pD.a(chǎn)-p

查看答案和解析>>

同步練習(xí)冊(cè)答案